Oxidation of Metals

, Volume 32, Issue 1–2, pp 13–45 | Cite as

Internal-external transition for the oxidation of Fe-Cr-Ni austenitic stainless steels in steam

  • Nobuo Otsuka
  • Yoshiaki Shida
  • Hisao Fujikawa


Several Fe-Cr-Ni austenitic stainless steels (Cr wt.%: 13–25, Ni wt.%: 15) were oxidized in steam for 1000 hr at 500–900°C. The oxide scales were examined and categorized with respect to the chromium concentration and the grain size of the base metal. Experiments showed three conditions for the critical bulk Cr concentration and the oxidation temperature at which the oxidation behavior changed drastically. Metallographic examination showed that two of these three conditions resulted from the internal-external transition of Cr2O3 either on the metal surface or along the grain boundaries of the base metal. Attempts were made to interpret these conditions from the available oxidation theories. Atkinson's treatment was employed with some modification to incorporate the grain-boundary diffusion of Cr in the base metal. The calculation basically explained the internal-external transition for the oxidation of these steels.

Key words

steam oxidation external oxidation internal oxidation grain-size effect of the base metal austenitic stainless steels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Moroishi,Boshoku Gijutsu,25, 97 (1976) [in Japanese].Google Scholar
  2. 2.
    F. Eberle and C. H. Anderson,Trans. ASME J. Eng. Power, July, 223 (1962).Google Scholar
  3. 3.
    “The Spalling of Steam-Grown Oxide from S/H and R/H Tube Steels”, EPRI Final Report, FP-686, TPS 76-655, February 1978.Google Scholar
  4. 4.
    T. Ericsson,Oxid. Met. 2, 173 (1970).Google Scholar
  5. 5.
    T. Ericsson,Oxid. Met. 2, 401 (1970).Google Scholar
  6. 6.
    W. E. Ruther and S. Greenberg, J. Electrochemical Society,111, 1116 (1964).Google Scholar
  7. 7.
    M. Warzee, J. Hennaut, M. Maurice, C. Sonnen, J. Waty and Ph. Berge,J. Electrochem. Soc.,112, 670 (1965).Google Scholar
  8. 8.
    S. Jansson, W. Hübner, G. Östberg, and M. dePoubaix,Br. Corr. J. 4, 21 (1969).Google Scholar
  9. 9.
    S. Leistikow,Int. Conf. High Temp. Oxid. 4, 278 (1966).Google Scholar
  10. 10.
    M. Kowaka and S. Nagata,J. Inst. Met. 36, 486 (1972), in Japanese.Google Scholar
  11. 11.
    Y. Shida, N. Otsuka, and H. Fujikawa,Proc. JIMIS 3, 631 (1983).Google Scholar
  12. 12.
    A. F. Smith, M. O. Tucker, and R. Hales,Oxid. Met. 17, 329 (1982).Google Scholar
  13. 13.
    F. Abe, H. Araki, H. Yoshida, M. Okada, and W. Watanabe,Corr. Sci. 21, 819 (1981).Google Scholar
  14. 14.
    A. Atkinson,Corr. Sci. 22, 87 (1982).Google Scholar
  15. 15.
    A. E. Hughes,Corr. Sci.,22, 103 (1982).Google Scholar
  16. 16.
    P. Guiraldenq and P. Poyet, Mem. Sc. Rev. LXX n 10715 (1973), see D. Juve-Duc, D. Treheux and P. Guiraldenq,Scripta Met.,12, 1107 (1978).Google Scholar
  17. 17.
    P. Moulin, A. M. Huntz, and P. Lacombe,Acta Met.,27, 1431 (1979).Google Scholar
  18. 18.
    J. H. Swisher and E. T. Turkdogan,Trans. AIME,239, 426 (1967).Google Scholar
  19. 19.
    R. A. Rapp,Corrosion,21, 382 (1965).Google Scholar
  20. 20.
    P. Moulin, A. M. Huntz, and P. Lacombe,Acta Met.,27, 745 (1979).Google Scholar
  21. 21.
    J. C. Fisher,J. Appl. Phys.,22, 74 (1951).Google Scholar
  22. 22.
    J. Crank, The Mathematics of Diffusion, 2nd Ed. Clarendon Press, Oxford, England, 376Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Nobuo Otsuka
    • 1
  • Yoshiaki Shida
    • 1
  • Hisao Fujikawa
    • 1
  1. 1.Research and Development DivisionSumitomo Metal Industries, Ltd.Amagasaki HyogoJapan

Personalised recommendations