Oxidation of Metals

, Volume 39, Issue 5–6, pp 411–435

Oxidation of copper and electronic transport in copper oxides

  • J. -H. Park
  • K. Natesan
Article

Abstract

Oxidation of copper and electronic transport in thermally-grown large-grain polycrystals of nonstoichiometric copper oxides were studied at elevated temperatures. Thermogravimetric copper oxidation was studied in air and oxygen at temperatures between 350 and 1000°C. From the temperature dependence of the oxidation rates, three different processes can be identified for the oxidation of copper: bulk diffusion, grain-boundary diffusion, and surface control with whisker growth; these occur at high, intermediate, and low temperatures, respectively. Electrical-conductivity measurements as a function of temperature (350–1134°C) and oxygen partial pressure (10−8–1.0 atm) indicate intrinsic electronic conduction in CuO over the entire range of conditions. Electronic behavior of nonstoichiometric Cu2O indicates that the charge defects are doubly-ionized oxygen interstitials and holes. The calculated enthalpy of formation of oxygen (\(\Delta H_{{\text{O}}_{\text{2}} }\)) and hole-conduction energy (EH) at constant composition for nonstoichiometric Cu2O are 2.0±0.2 eV and 0.82±0.02 eV, respectively.

Key words

Cu oxidation electrical conductivity defect mechanism defect mobility nonstoichiometry copper oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kofstad,Non-Stoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience, New York, 1972).Google Scholar
  2. 2.
    C. Wagner and H. Hammen,Z. Physik. Chem. B 40, 197 (1938).Google Scholar
  3. 3.
    M. O'Keefe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962); H. L. McKinzie and M. O'Keefe,Phys. Lett. A 24, 137 (1967).Google Scholar
  4. 4.
    S. Mrowec, A. Stoklosa, and K. Godlewski,Cryt. Lat. Def. 5, 239 (1974).Google Scholar
  5. 5.
    M. Yoshimura, A. Revcolevschi, and J. Castaing,J. Mater. Sci. 11, 384 (1976).Google Scholar
  6. 6.
    Y. D. Tretyakov, V. F. Komarov, N. A. Prosvirhina, and I. B. Kusenok,J. Solid St. Chem. 5, 157 (1972).Google Scholar
  7. 7.
    J. Maluenda, R. Farhi, and G. Petot-Ervas,J. Phys. Chem. Solids 42, 911 (1981).Google Scholar
  8. 8.
    F. Perinet, S. Barbezat, and C. Nonty,J. Phys. Colloq. C 6, 315 (1980).Google Scholar
  9. 9.
    J. Gunderman, K. Hauffe, and C. Wagner,Z. Physik. Chem. B 37, 148 (1937).Google Scholar
  10. 10.
    M. O'Keefe and W. J. Moore,J. Chem. Phys. 35, 1324 (1961).Google Scholar
  11. 11.
    R. S. Toth, R. Kilkson, and D. Trivich,Phys. Rev. 122, 482 (1961).Google Scholar
  12. 12.
    K. Stecker,Ann. Phys. 7, 55 (1959).Google Scholar
  13. 13.
    N. L. Peterson and C. L. Wiley,J. Phys. Chem. Solids 45(3), 281–294 (1984).Google Scholar
  14. 14.
    J. Maluenda, R. Farhi, and G. Petot-Ervas,J. Phys. Chem. Solids 42, 697 (1981).Google Scholar
  15. 15.
    M. O'Keefe, Y. Ebisuzaki, and W. J. Moore,J. Phys. Soc. Jpn. 18, 131 (1963).Google Scholar
  16. 16.
    Handbook of Chemistry and Physics, 61st Ed. (CRC press, 1981).Google Scholar
  17. 17.
    W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids 38, 1205 (1977).Google Scholar
  18. 18.
    E. Iguchi, K. Yajima, and Y. Saito,Trans. Jpn. Inst. Met. 14, 423 (1973).Google Scholar
  19. 19.
    C. Wagner and K. Grunewald,Z. Phys. Chem. B 40, 197 (1938).Google Scholar
  20. 20.
    J. P. Baur, D. W. Bridges, and W. M. Fassell, Jr.,J. Electrochem. Soc. 103, 273 (1956).Google Scholar
  21. 21.
    W. Feitknecht,Z. Elektrochem. 35, 142 (1929).Google Scholar
  22. 22.
    S. Mrowec and A. Stoklosa,Oxid. Met. 3, 142 (1971).Google Scholar
  23. 23.
    B. Onay,J. Electrochem. Soc. 136, 1578 (1989).Google Scholar
  24. 24.
    R. G. Kaufman and R. T. Hawkins,J. Electrochem. Soc. 131(2), 385;133(12), 2652 (1986);135(8), 2096 (1988);J. Luminesc. 31 &32, 509 (1984).Google Scholar
  25. 25.
    P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988).Google Scholar
  26. 26.
    R. A. Rapp,Metall. Trans. A 15, 765 (1984); G. M. Raynaud and R. A. Rapp,Oxid. Met. 21, 89 (1984).Google Scholar
  27. 27.
    J.-H. Park and K. Natesan,Oxid. Met. 33, 31 (1990).Google Scholar
  28. 28.
    J.-H. Park and R. N. Blumenthal,J. Electrochem. Soc. 136, 2867 (1989).Google Scholar
  29. 29.
    J.-H. Park,Physica B 150, 80 (1988).Google Scholar
  30. 30.
    G. Herzberg,Atomic Spectra and Atomic Structure (Dover Pub., New York, 1944).Google Scholar
  31. 31.
    K. Stecker,Ann. Physik. 7, 55 (1959);7, 70 (1959).Google Scholar
  32. 32.
    L. B. Pankratz,Thermodynamic Properties of Elements and Oxides, U.S. NBS pub.B 272, National Bureau of Standards, Gaitherburg, MD, 1982.Google Scholar
  33. 33.
    M. H. Sukkar and H. L. Tuller, inSurface and Near-Surface Chemistry of Oxide Materials, Chap.15, J. Nowotny and L.-C. Dufour, eds. (Elsevier Science Publishers B. V., Amsterdam, 1988), p. 611.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • J. -H. Park
    • 1
  • K. Natesan
    • 1
  1. 1.Materials and Components Technology DivisionArgonne National LaboratoryArgonne

Personalised recommendations