Journal of comparative physiology

, Volume 107, Issue 1, pp 113–128 | Cite as

Reactions of the spiny lobster,Palinunis vulgaris, to substrate tilt (I.)

  • Hermann Schöne
  • Douglas M. Neil
  • Armin Stein
  • Mary K. Carlstead


Movements of legs on a tilting footboard during fore-aft and side-side tilts elicit a number of different reactions in the spiny lobster,Palinurus vulgaris. Most prominent among these are the predominantly phasic equilibrium reactions of the antennae in the direction opposite to footboard tilt, and the compensatory phasic and tonic deviations of the eyestalks in the direction of footboard movement. Systematic movements of the abdomen and uropods also take place, and the legs display resistance reactions which oppose board movement. Stimulation of a single leg is sufficient to produce the major components of these responses. After stiffening of the C-B joints reactions fail to appear. Mechanism and functional significance of these reactions are discussed in the context of the relevant biological stimuli.


Phasic Equilibrium Functional Significance Systematic Movement Equilibrium Reaction Resistance Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.McN.: Size and shape. The Institute of Biology's Studies in Biology, No. 29. London: Edward Arnold 1971Google Scholar
  2. Alverdes, F.: Stato-, Photo- und Tangoreaktionen bei zwei Garneelenarten. Z. vergl. Physiol.4, 699–765 (1926)Google Scholar
  3. Bässler, U.: Proprioceptoren am Subcoxal- und Femur-Tibia-Gelenk der StabheuschreckeCarausius morosus und ihre Rolle bei der Schwerkraftrichtung. Kybernetik2, 168–192 (1965)Google Scholar
  4. Bush, B.M.H.: Proprioceptive reflexes in the legs ofCarcinus maenas. J. exp. Biol.39, 89–105 (1962)Google Scholar
  5. Bush, B.M.H.: A comparative study of certain limb reflexes in decapod crustaceans. Comp. Biochem. Physiol.10, 273–290 (1963)Google Scholar
  6. Bush, B.M.H.: Proprioception by chordotonal organs in the mero-carpopodite and carpo-propodite joints ofCarcinus maenas legs. Comp. Biochem. Physiol.14, 185–199 (1965)Google Scholar
  7. Bush, B.M.H., Clarac, F.: Intersegmental reflex excitation of leg muscles and myochordotonal efferents in decapod Crustacea. J. Physiol. (Lond.)246, 58P (1975)Google Scholar
  8. Clarac, F., Dando, M.R.: Tension receptor reflexes in the walking legs of the crabCancer pagurus. Nature (Lond.)243, 94–85 (1973)Google Scholar
  9. Clarac, F., Neil, D.M., Vedel, J.P.: The control of antennal movements by leg proprioceptors in the rock lobster,Palinurus vulgaris. J. comp. Physiol., in press (1976)Google Scholar
  10. Clarac, F., Vedel, J.P.: Etude électrophysiologique du récepteur hydrodynamique de l'antenne de la LangoustePalinurus vulgaris. C.R. Acad. Sc. (Paris)276, 603–606 (1973)Google Scholar
  11. Clarac, F., Vedel, J.P.: Neurophysiological study of the antennal motor patterns in the rock lobsterPalinurus vulgaris. I. Reflex modulation of extensor and flexor motoneurone activities. J. comp. Physiol.102, 201–221 (1975)Google Scholar
  12. Dijkgraaf, S.: Kompensatorische Augenstieldrehungen und ihre Auslösung bei der Languste (Palinurus vulgaris). Z. vergl. Physiol.38, 491–520 (1956)Google Scholar
  13. Evoy, W.H., Cohen, M.K.: Sensory and motor interactions in the locomotor reflexes of crabs. J. exp. Biol.51, 151–170 (1969)Google Scholar
  14. Fay, R.: Multisensory interaction in control of eyestalk rotation response in the crayfish (Procambarus clarkii). J. comp. Physiol. Psychol.84, 527–533 (1973)Google Scholar
  15. Fernald, R.: Fast body turns in a Cichlid fish. Nature (Lond.)258, 228–229 (1975)Google Scholar
  16. Fraser, P.J.: Interneurones in crab connectives (Carcinus maenas, L.): Directional statocyst fibres. J. exp. Biol.61, 615–628 (1974)Google Scholar
  17. Hartman, H.B., Austin, W.D.: Proprioceptor organs in the antennae of Decapoda Crustacea. I. Physiology of a chordotonal organ spanning two joints in the spiny lobsterPanulirus interruptus R. J. comp. Physiol.81, 187–202 (1972)Google Scholar
  18. Herrnkind, W., McLean, R.: Field studies of homing, mass emigration and orientation in the spiny lobster,Panulirus argus. In: Animal Orientation Sensory Basis (Ed. H.E. Adler). Ann. N.Y. Acad. Sci.188, 359–377 (1971)Google Scholar
  19. Horn, E.: The contribution of different receptors to gravity orientation in insects. In: Mechanisms of spatial perception and orientation as related to gravity (Ed. H. Schöne). Fortschr. Zool.23, 1–20 (1975)Google Scholar
  20. Kühn, A.: Die reflektorische Erhaltung des Gleichgewichtes bei Krebsen. Verh. Dtsch. zool. Ges.24, 262–277 (1914)Google Scholar
  21. MacMillan, D.L., Dando, M.R.: Tension receptors on the apodemes of muscles in the walking legs of the crab,Cancer magister. Mar. Behav. Physiol.1, 185–208 (1972)Google Scholar
  22. Magnus, R.: Körperstellung. Berlin: Springer 1924Google Scholar
  23. Rademaker, G.G.J.: Das Stehen, Statische Reaktionen, Gleichgewichtsreaktionen und Muskeltonus unter besonderer Berücksichtigung ihres Verhaltens bei Kleinhirnlosen Tieren. Berlin: Springer 1931Google Scholar
  24. Roberts, T.D.M.: Neurophysiology of postural mechanisms. London: Butterworths 1967Google Scholar
  25. Schöne, H.: Gravity receptors and gravity orientation in Crustacea. In: Gravity and the organism (Eds. Gordon and Cohen) pp. 223–235. Chicago and London: University of Chicago Press 1971Google Scholar
  26. Schöne, H., Schöne, H.: Integrated function of statocyst and antennular proprioceptive organ in the spiny lobster. Naturwissenschaften54, 289–290 (1967)Google Scholar
  27. Sherrington, C.: The integrative action of the nervous system. Cambridge: University Press 1947Google Scholar
  28. Stein, A., Schöne, H.: Über das Zusammenspiel von Schwereorientierung und Orientierung zur Unterlage beim Flußkrebs. Verh. dtsch. zool. Ges.65, 225–229 (1972)Google Scholar
  29. Vedel, J.P., Clarac, F.: Neurophysiological study of the antennal motor patterns in the rock lobsterPalinurus vulgaris. II. Motoneuronal discharge patterns during passive and active flagellum movements. J. comp. Physiol.102, 223–235 (1975)Google Scholar
  30. Wendler, G.: Gravity orientation in insects: the role of different mechanoreceptors. In: Gravity and the organism, pp. 195–201 (Eds. S.A. Gordon, M.J. Cohen). Chicago and London: University of Chicago Press 1971Google Scholar
  31. Wendler, G.: Körperhaltung bei der Stabheuschrecke: ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung. Verh. dtsch. Zool. Ges.65, 214–219 (1972)Google Scholar
  32. Wendler, G.: Physiology and Systems Analysis of Gravity Orientation in two insect species (Carausius morosus, Calandra granaria). In: Mechanisms of spatial perception and orientation as related to gravity (Ed. H. Schöne). Fortschr. Zool.23, 33–48 (1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Hermann Schöne
    • 1
  • Douglas M. Neil
    • 1
    • 2
  • Armin Stein
    • 1
  • Mary K. Carlstead
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesenFederal Republic of Germany
  2. 2.Gatty Marine LaboratorySt. Andrews UniversityScotland

Personalised recommendations