Oxidation of Metals

, Volume 36, Issue 3–4, pp 281–315 | Cite as

Effect of alloy grain size and silicon content on the oxidation of austenitic Fe-Cr-Ni-Mn-Si alloys in pure O2

  • S. N. Basu
  • G. J. Yurek


Austenitic Fe-18Cr-20Ni-1.5Mn alloys containing 0, 0.6, and 1.5 wt.% Si were produced both by conventional and rapid solidification processing. The isothermal and cyclic oxidation resistance of the alloys were studied at 900°C in pure O2 to elucidate the role of alloy microstructure and Si content on oxidation properties. The conventionally-processed, large-grained alloy that contained no silicon formed Fe-rich nodules during oxidation. The nodule formation was effectively eliminated by either reducing the alloy grain size by rapid solidification or by adding Si to the alloy. The lowest weight gains were achieved when a continuous silica layer formed between the alloy and the external chromia scale. The formation of the continuous silica layer required a ombination of fine alloy grain size and high Si content. The presence of S in the alloy was found to be detrimental to oxide scale adherence when the silica layer was continuous.

Key words

Fe-Cr-Ni alloys rapid solidification processing oxidation spallation silica sulfur 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Lobb and H. E. Evans,Met. Sci. 15(6), 267 (1981).Google Scholar
  2. 2.
    D. R. Baer and M. D. Merz,Metall. Trans. A 11A, 1973 (1980).Google Scholar
  3. 3.
    G. J. Yurek, D. Eisen, and A. Garatt Reed,Metall. Trans. A 13A, 473 (1982).Google Scholar
  4. 4.
    K. Barmak,High Temperature Oxidation of Rapidly Solidified Fe-Cr-Ni Alloys Containing Si (S. M. thesis, MIT, Cambridge, MA, 1985).Google Scholar
  5. 5.
    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 14(3), 235 (1980).Google Scholar
  6. 6.
    A. Kumar and D. L. Douglass,Oxid. Met. 10(1), 1 (1976).Google Scholar
  7. 7.
    M. J. Bennett, J. A. Desport, and P. A. Labun,Oxid. Met. 22(5/6), 291 (1984).Google Scholar
  8. 8.
    A. G. Revesz and F. P. Fehlner,Oxid. Met. 15(3/4), 297 (1981).Google Scholar
  9. 9.
    F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood,Werkst. Korros. 38, 521 (1987).Google Scholar
  10. 10.
    Y. Saito, T. Maruyama, and T. Amano,Proceedings of the International Symposium on High Temperature Corrosion (Marseille, France, 1986) p. 61.Google Scholar
  11. 11.
    Gas Atomizer constructed by M. Maloney as a part of his Ph.D. thesis at MIT.Google Scholar
  12. 12.
    K. Ledjeff, A. Rahmel, and M. Schorr,Oxid. Met. 15(5/6), 485 (1981).Google Scholar
  13. 13.
    I. R. McLauchlin and R. Hales,Werkst. Korros. 29, 326 (1978).Google Scholar
  14. 14.
    C. Y. Hsu,Grain Growth Mechanisms in Rapidly Solidified Matrix Steels (Ph.D. thesis, MIT, Cambridge, MA, 1984).Google Scholar
  15. 15.
    K. Barmak, S. N. Basu, A. J. Garatt-Reed, and G. J. Yurek,Int. J. Rapid Solidification 4, 205 (1989).Google Scholar
  16. 16.
    C. Wagner,J. Electrochem. Soc. 99(10), 369 (1952).Google Scholar
  17. 17.
    M. Landkov, A. V. Levy, D. H. Boone, R. Gray, and E. Yariv,Corrosion 41(6), 344 (1985).Google Scholar
  18. 18.
    S. N. Basu,Mechanisms of Oxidation of Crystalline Rapidly Solidified Alloys (Ph.D. thesis, MIT, Cambridge, MA, 1989).Google Scholar
  19. 19.
    J. Stringer,Corros. Sci. 10, 513 (1970).Google Scholar
  20. 20.
    Y. K. Kil,Mechanisms of the Oxidation/Sulfidation of Chromium and Chromium Bearing Alloys in H 2-H 2 O-H 2 S Gas Mixtures (Ph.D. thesis, MIT, Cambridge, MA, 1988).Google Scholar
  21. 21.
    A. W. Funkenbush, J. G. Smeggil, and N. S. Bornstien,Metall. Trans. A 16A, 1164 (1985).Google Scholar
  22. 22.
    H. E. Evans and R. C. Lobb,Corros. Sci. 3, 209 (1984).Google Scholar
  23. 23.
    K. Przybylski and G. J. Yurek,The Influence of Implanted Yttrium on the Mechanisms of Growth of Chromia Scales, To be published in the Materials Science Forum.Google Scholar
  24. 24.
    A. Ahmed, T. ElShamy, and N. Sharaf,J. Am. Cer. Soc. 63, 537 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • S. N. Basu
    • 1
  • G. J. Yurek
    • 1
  1. 1.H. H. Uhlig, Corrosion LaboratoryMassachusetts Institute of TechnologyCambridge

Personalised recommendations