Journal of Low Temperature Physics

, Volume 45, Issue 1–2, pp 189–232 | Cite as

The microelectronic structure of platinum particles investigated by NMR

  • I. Yu
  • W. P. Halperin


The properties of195Pt nuclear magnetic resonance of small particles have been studied over a range of particle sizes from 33 to 200 Å using pulsed NMR techniques. This work was initiated to study size-dependent phenomena and to elucidate their physical origin. An anomalous linewidth, more than an order of magnitude larger than that of bulk platinum for the smallest size sample, was discovered. This was found to be inhomogeneous broadening and to have a size dependence (d)−1, whered is the mean particle diameter of the sample. Within the temperature range of 1.7–77 K, no temperature dependence was observed. As a consequence, the broadening was attributed to an intraparticle Knight shift distribution resulting from electron spin density oscillations associated with the metal surface. Spin-echo envelopes from the small platinum particles were found to decay nonexponentially, indicating the presence of a nuclear spin diffusion process in the magnetic field gradients associated with the Knight shift distribution. The diffusion process was measured by the Hahn (90°–180°) pulse technique and the Carr-Purcell-Meibocm-Gill techniques and analyzed using a spin diffusion constant of platinum computed with the moment method of Redfield and Yu. The computed spin diffusion constant wasDz=4×10−12 cm2/sec and from this an rms magnetic field gradient was determined. Upon analyzing the size-dependent spin-echo results, the field gradient was found to be characteristic of a surface region of thickness 1.5 ± 0.5 lattice constants independent of the size of the particles.

In contrast to these anomalous properties of small platinum particles, the peak position of the resonance lines and the spin-spin and spin-lattice relaxation times were found to be identical to the values for bulk material. A simple model ascribing free electron behavior tos conduction electrons was applied to study quantitatively the effects of electron spin density oscillation on NMR properties. Applying an infinite-barrier boundary condition to the electrons, we computed numerically the electron charge and spin density distributions for platinum particles of diameter up to 300 Å. The computations revealed Friedel oscillations of these densities near the particle surface. From the computed electron spin density of thes electrons, the spatial distribution of the contact Knight shift was obtained, which could account for all the observed NMR properties of small platinum particles—the resonance position, line shape, linewidth, relaxation times, rms field gradient, and the thickness of the surface region.


Magnetic Field Gradient Spin Diffusion Platinum Particle Knight Shift Spin Density Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. I. Aalto, H. K. Colan, R. G. Gylling, and K. O. Nores,Rev. Sci. Instrum. 44, 1075 (1973).Google Scholar
  2. 2.
    J. F. Hamilton and R. C. Baetzold,Science 205, 1213 (1979).Google Scholar
  3. 3.
    G. C. Carter, L. H. Bennett, and D. J. Kahan,Progress in Materials Science 20, 295 (1977).Google Scholar
  4. 4.
    R. F. Marzke, W. S. Glaunsinger, and M. Bayard,Solid State Commun. 18, 1025 (1976).Google Scholar
  5. 5.
    S. G. Davison and J. D. Levine,Solid State Physics 25, 1 (1970).Google Scholar
  6. 6.
    N. D. Lang and W. Kohn,Phys. Rev. B 1, 4555 (1970);3, 1215 (1971); N. D. Lang,Solid State Physics 28, 225 (1973).Google Scholar
  7. 7.
    A Blandin, inTheory of Magnetism in Transition Metals, W. Marshall, ed. (Academic Press, New York, 1967).Google Scholar
  8. 8.
    U. von Barth and L. Hedin,J. Phys. C 5, 1629 (1972).Google Scholar
  9. 9.
    J. P. Perdew,Phys. Rev. B16, 1525 (1977).Google Scholar
  10. 10.
    R. L. Kautz, A. J. Freeman, and B. B. Schwartz,Phys. Lett. 57, A473 (1976).Google Scholar
  11. 11.
    I. Yu, A. A. V. Gibson, E. R. Hunt, and W. P. Halperin,Phys. Rev. Lett. 44, 348 (1980).Google Scholar
  12. 12.
    P. W. Selwood,Adsorption and Collective Paramagnetism (Academic Press, New York, 1962).Google Scholar
  13. 13.
    P. W. Anderson,J. Phys. Chem. Solids 11, 26 (1959).Google Scholar
  14. 14.
    H. Fröhlich,Physica 4, 406 (1937).Google Scholar
  15. 15.
    R. Kubo,J. Phys. Soc. Japan 17, 975 (1962).Google Scholar
  16. 16.
    D. J. Thouless,Phys. Rev. Lett. 39, 1167 (1977).Google Scholar
  17. 17.
    J. Charvolin, C. Froidevaux, C. Taupin, and J. M. Winter,Solid State Commun. 4, 357 (1966).Google Scholar
  18. 18.
    C. Taupin,J. Phys. Chem. Solids 28, 41 (1967).Google Scholar
  19. 19.
    S. Kobayashi, T. Takahashi, and W. Sasaki,J. Phys. Soc. Japan 36, 714 (1974).Google Scholar
  20. 20.
    S. Kobayashi, T. Takahashi, and W. Saski,J. Phys. Soc. Japan Suppl. 32, 1234 (1972).Google Scholar
  21. 21.
    P. Yee and W. D. Knight,Phys. Rev. B 11, 3261 (1975).Google Scholar
  22. 22.
    K. Nomura, S. Kobayashi, and W. Saski,Solid State Commun. 24, 81 (1977).Google Scholar
  23. 23.
    C. G. Granqvist and R. A. Buhrman,J. Appl. Phys. 47, 2200 (1976).Google Scholar
  24. 24.
    R. M. Wilenzick, D. C. Russell, R. H. Morriss, and S. W. Marshall,J. Chem. Phys. 47, 533 (1967).Google Scholar
  25. 25.
    R. A. Buhrman, private communication.Google Scholar
  26. 26.
    N. R. Avery and J. B. Sanders,J. Catal. 18, 129 (1970).Google Scholar
  27. 27.
    T. A. Dorling, B. W. J. Lynch, and R. L. Moss,J. Catal. 20, 190 (1971).Google Scholar
  28. 28.
    T. Uchijima, J. M. Herrmann, Y. Inoue, R. L. Burwell, Jr., J. B. Butt, and J. B. Cohen,J. Catal. 50, 464 (1977).Google Scholar
  29. 29.
    S. R. Sashital, J. B. Cohen, R. L. Burwell, Jr., and J. B. Butt,J. Catal. 50, 479 (1977).Google Scholar
  30. 30.
    D. M. Young and A. D. Crowell,Physical Adsorption of Gases (Butterworths, Washington, 1962).Google Scholar
  31. 31.
    D. W. McKee,J. Phys. Chem. 67, 841 (1963).Google Scholar
  32. 32.
    M. A. Vannice, J. E. Benson, and M. Boudart,J. Catal. 16, 348 (1970).Google Scholar
  33. 33.
    I. Yu, Ph.D. thesis, Northwestern University (1980), unpublished.Google Scholar
  34. 34.
    T. C. Farrar and E. D. Becker,Pulsed and Fourier Transform NMR (Academic Press, New York, 1971), p. 20.Google Scholar
  35. 35.
    E. L. Hahn,Phys. Rev. 80, 580 (1950).Google Scholar
  36. 36.
    H. Y. Carr and E. M. Purcell,Phys. Rev. 94, 630 (1954).Google Scholar
  37. 37.
    S. Meiboom and D. Gill,Rev. Sci. Instrum. 29, 688 (1958).Google Scholar
  38. 38.
    R. Freeman and S. Wittekoek,J. Mag. Resonance 1, 238 (1969).Google Scholar
  39. 39.
    L. E. Drain,Proc. Phys. Soc. (Lond.)80, 1380 (1962).Google Scholar
  40. 40.
    J. R. Zimmermann and W. E. Brittin,J. Phys. Chem. 61, 1328 (1957).Google Scholar
  41. 41.
    R. C. Wayne and R. M. Cotts,Phys. Rev. 151, 264 (1966).Google Scholar
  42. 42.
    D. H. Dye, J. B. Ketterson, and G. W. Crabtree,J. Low Temp. Phys. 30, 813 (1978).Google Scholar
  43. 43.
    A. Abragam,The Principles of Nuclear Magnetism (Clarendon Press, London, 1961).Google Scholar
  44. 44.
    P. Jena, K. S. Singwi, and R. M. Nieminen,Phys. Rev. B 17, 301 (1978).Google Scholar
  45. 45.
    A. M. Clogston, V. Jaccarino, and Y. Yafet,Phys. Rev. 134, A650 (1964).Google Scholar
  46. 46.
    M. Shaham, U. El-Hanany, and D. Zamir,Phys. Rev. B 17, 3513 (1978).Google Scholar
  47. 47.
    H. Alloul and C. Froidevaux,Phys. Rev. 163, 324 (1967).Google Scholar
  48. 48.
    A. G. Redfield,Phys. Rev. 116, 315 (1959); A. G. Redfield and W. N. Yu,Phys. Rev. 169, 443 (1968).Google Scholar
  49. 49.
    J. R. Thompson, E. R. Hunt, and H. Meyer,Phys. Lett. 25A, 313 (1967).Google Scholar
  50. 50.
    L. D. Graham, Ph.D. thesis, Northwestern University (1968).Google Scholar
  51. 51.
    C. Froidevaux and M. Weger,Phys. Rev. Lett. 12, 123 (1964).Google Scholar
  52. 52.
    C. Berthier, V. Jaccarino, and M. Minier,Solid State Commun. 17, 147 (1975).Google Scholar
  53. 53.
    O. K. Anderson,Phys. Rev. B 2, 883 (1970).Google Scholar
  54. 54.
    G. R. Stewart,Phys. Rev. B 15, 1143 (1977).Google Scholar
  55. 55.
    C. Kittel,Quantum Theory of Solids (Wiley, New York, 1963).Google Scholar
  56. 56.
    L. H. Bennett, R. E. Watson, and G. C. Carter,J. Res. NBS 74A, 569 (1970).Google Scholar
  57. 57.
    J. H. Van Vleck,Phys. Rev. 74, 1168 (1948).Google Scholar
  58. 58.
    N. Bloembergen and T. J. Rowland,Phys. Rev. 97, 1679 (1955).Google Scholar
  59. 59.
    M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954).Google Scholar
  60. 60.
    P. W. Anderson and P. R. Weiss,Rev. Mod. Phys. 25, 269 (1953).Google Scholar
  61. 61.
    N. Bloembergen,Physica 15, 386 (1949).Google Scholar
  62. 62.
    G. R. Khutsishvili,Progress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam 1970), Vol. 6, p. 375, and references therein; T. T. P. Cheung,Phys. Rev. B 23, 1404 (1981).Google Scholar
  63. 63.
    R. E. Walstedt,Phys. Rev. 138, A1096 (1965).Google Scholar
  64. 64.
    R. E. Walstedt, M. W. Dowley, E. L. Hahn, and C. Froidevaux,Phys. Rev. Lett. 8, 406 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • I. Yu
    • 1
  • W. P. Halperin
    • 1
  1. 1.Department of Physics and Astronomy and Materials Research CenterNorthwestern UniversityEvanston

Personalised recommendations