, Volume 27, Issue 1–2, pp 125–159 | Cite as

Brouwer's constructivism

  • Carl J. Posy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernays, P., 1935, ‘Sur le Platonism dans les Mathématiques’,L'Enseigement mathémathique 34, pp. 52–69. Translated by C. Parsons and reprinted inPhilosophy of Mathematics (ed. by P. Benacerraf and H. Putnam), Prentice Hall, Englewood Cliffs, N.J., pp. 274–286.Google Scholar
  2. Brouwer, L. E. J., 1907,Over de Grondslagen der Wiskunde, Dissertation, University of Amsterdam.Google Scholar
  3. Brouwer, L. E. J., 1913, ‘Intuitionism and Formalism’,Bull. Amer. Math. Soc. 20, pp. 81–96.Google Scholar
  4. Brouwer, L. E. J., 1927, ‘Über Definitionsbereiche von Funktionen’,Math. Ann. 97, pp. 60–75.Google Scholar
  5. Brouwer, L. E. J., 1929, ‘Mathematik Wissenschaft und Sprache’,Monatshefte für Mathematik und Physik 36, pp. 153–164.Google Scholar
  6. Brouwer, L. E. J., 1948, ‘Essentieel Negatieve Eigenschappen’,Proc. Kon. Ned. Akad. Wet. 51, pp. 791–793 (orIndagnationes mathematicae 10, pp. 322–324).Google Scholar
  7. Brouwer, L. E. J., 1948a, ‘Consciousness, Philosophy and Mathematics’, inProceedings Xth International Congress of Philosophy, Amsterdam, Proc. I, Fasc. II, pp. 1235–1249.Google Scholar
  8. Brouwer, L. E. J., 1948b, ‘Opmerkingen over het Beginsel van het Uitgesloten Derde en over Negatieve Asserties’,Proc. Kon. Ned. Akad. Wet. 51, pp. 1239–1244 (Indagnationes Mathematicae 10, pp. 383–388).Google Scholar
  9. Brouwer, L. E. J., 1949, ‘De Non-aequivalentie van de Constructieve en de Negatieve Orderrelatie in het Continuum’,Proc. Kon. Ned. Akad. Wet. 52, pp. 122–125 (Indagnationes mathematicae 11, pp. 37–40).Google Scholar
  10. Brouwer, L. E. J., 1949a, ‘Contradictoriteit der Elementaire Meetkunde’,Proc. Kon. Ned. Akad. 52, pp. 315–316 (Indagnationes mathematicae 11, pp. 89–90).Google Scholar
  11. Brouwer, L. E. J., 1952, ‘Historical Background, Principles and Methods of Intuitionism’,South African J. Sci. 49, pp. 139–146.Google Scholar
  12. Brouwer, L. E. J., 1953, ‘Discours Final’, inLes Méthodes formelles en Axiomatique, Colloques Internationaux du CNRS, 1950.Google Scholar
  13. Brouwer, L. E. J., 1954, ‘Points and Spaces’,Canadian Journal of Mathematics 6, pp. 1–17.Google Scholar
  14. Brouwer, L. E. J., 1954a, ‘An Example of Contradictority in the Classical Theory of Functions’,Proc. Kan. Ned. Akad. Wet. 57, pp. 204–206 (Indagnationes mathematicae 16, pp. 204–206).Google Scholar
  15. van Dalen, D., 1971, ‘Lectures on Intuitionism’, inProceedings of the Cambridge Summer School in Mathematical Logic (ed. by A. R. D. Mathias and H. Rogers), Lecture Notes in Mathematics, Nr. 337, Springer-Verlag, Berlin, pp. 1–94.Google Scholar
  16. van Dalen, D. and Troelstra, A. S., 1970, ‘Projections of Lawless Sequences’, inIntuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo N.Y., 1968, (ed. by J. Myhill, A. Kino, and R. Vesley), North-Holland Publ. Co., Amsterdam, pp. 163–186.Google Scholar
  17. Heyting, A., 1958, ‘Intuitionism in Mathematics’, inPhilosophy in Mid-Century, (ed. by R. Klibansky), La Nuova Italia Editrice, Firenze, pp. 101–115.Google Scholar
  18. Heyting, A., 1966,Intuitionism: An Introduction, Second Edition, North-Holland Publ. Co., Amsterdam, ix + 137 pp.Google Scholar
  19. Hintikka, J., 1962,Knowledge and Belief, Cornell University Press, Ithaca, x + 179 pp.Google Scholar
  20. Hintikka, J., 1973,Logic, Language Games and Information, Oxford University Press, London, x + 291 pp.Google Scholar
  21. Kleene, S. C., 1969,Formalized Recursive Functionals and Formalized Realizability, Memoirs, American Math. Soc. Nr. 89, 106 pp.Google Scholar
  22. Kleene, S. C. and Vesley, R. E., 1965,The Foundations of Intuitionistic Mathematics, North-Holland Publ. Co., Amsterdam, viii + 206 pp.Google Scholar
  23. Kreisel, G., 1968, ‘Lawless Sequences of Natural Numbers’,Compositio Mathematica 20, pp. 222–248.Google Scholar
  24. Kreisel, G. and Troelstra, A. S., 1970, ‘Formal Systems for some Branches of Intuitionistic Analysis’,Annals of Mathematical Logic 1, pp. 229–387.Google Scholar
  25. Myhill, J. R., 1966, ‘Notes Towards an Axiomatization of Intuitionistic Analysis’,Logique et Analyse 35, pp. 280–297.Google Scholar
  26. Myhill, J. R., 1968, ‘Formal Systems of Intuitionistic Analysis II’, Unpublished lecture notes for the Summer Conference at Buffalo, N. Y.Google Scholar
  27. Myhill, J. R., 1970, ‘Formal Systems of Intuitionistic Analysis II: The Theory of Species’, inIntuitionism and Proof Theory (ed. by Myhillet al.), North-Holland Publ. Co., Amsterdam, pp. 151–162.Google Scholar
  28. Parsons, C., 1964, ‘Infinity and Kant's Conception of the “Possibility of Experience”’,Philosophical Review 73, pp. 183–197; Reprinted inKant, R. P. Wolff (ed.), Doubleday, Garden City, N.Y. pp. 37–53.Google Scholar
  29. Posy, C. J., 1971,The Intuitionistic Continuum and the Mathematical A Priori. Dissertation, Yale University.Google Scholar
  30. Posy, C. J., A, ‘Varieties of Indeterminacy in the Theory of General Choice Sequences’, forthcoming.Google Scholar
  31. Posy, C. J., B, ‘The Theory of Empirical Sequences’, forthcoming.Google Scholar
  32. Troelstra, A. S., 1968, ‘The Theory of Choice Sequences’,Logic, Methodology and Philosophy of Science III. (ed. by van Rootselaar and Stall), North-Holland Publ. Co., Amsterdam, pp. 332–354.Google Scholar
  33. Troelstra, A. S., 1969, ‘Informal Theory of Choice Sequences’,Studia Logica 25, pp. 31–52.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • Carl J. Posy
    • 1
  1. 1.The University of PittsburghUSA

Personalised recommendations