Journal of comparative physiology

, Volume 135, Issue 1, pp 29–39 | Cite as

Functional properties of the H1-neurone in the third optic Ganglion of the Blowfly,Phaenicia

  • Hendrik Eckert


Response properties of the identified H1-neurone upon monocular stimulation were investigated by means of extracellular recordings. Comparison with optomotor torque responses under the same or similar stimulus conditions demonstrated:
  1. 1.

    The neurone is excited by regressive pattern motion and inhibited by progressive pattern motion. Vertical motion and stationary patterns induce only weak excitatory responses (Fig. 3, 8).

  2. 2.

    If the spatial wavelength (λ) of the pattern is smaller than twice the interommatidial angleΔϕ, i.e.Δϕ<σ<2Δϕ, the response properties with regard to the direction of pattern movement are reversed: regressive motion causes aninhibition and progressive motion anexcitation (Fig. 8A). This finding accords with the concept of geometrical interference between the array of receptors and the moving striped pattern causing a reversal of the direction of movement of the interference pattern by 180 deg. As in the optomotor torque response, the geometrical interference is related to the interommatidial angle.

  3. 3.

    The response versus pattern velocity functions possess a spatial wavelength (λ) dependent maximum as do optomotor torque responses (Fig. 8).

  4. 4.

    The response versus pattern velocity curves share a common peak if theλ-dependence is eliminated by plotting the response versus the contrast frequency (Fig. 9). The maximum of the dependence lies atw/λ=1.4 Hz and thus agrees well with that of the optomotor torque response at 1–3 Hz (Fig. 10).

  5. 5.

    The size and sensitivity profile of the receptive field is similar to that obtained by evaluation of the torque response.

  6. 6.

    Statistical properties of the response under steady-state conditions show that the most frequent spike interval deviates from that corresponding to the average frequency: the lower the average frequency the larger the deviation. This finding is due to the asymmetrical distribution of the spike intervals. Of the two measures, the spike frequency corresponding to the most frequently occurring spike interval gives a better fit to the optomotor torque response.



Receptive Field Response Property Spike Frequency Progressive Motion Excitatory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



directionally selective motion detecting neurone


impulses/s (=i/s)


peristimulus time histogram


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Organization of visual axes in the compound eye of the flyMusca domestica L. and behavioural consequences. J. Comp. Physiol.102, 305–320 (1975)Google Scholar
  2. Bishop, L.G., Keehn, D.G.: Two types of motion sensitive neurons in the optic lobe of the fly. Nature212, 1374–1376 (1966)Google Scholar
  3. Bishop, L.G., Keehn, D.G., McCann, G.D.: Studies of motion detection by interneurones of the optic lobes and brain of the flies,Calliphora phaenicia andMusca domestica. J. Neurophysiol.31, 509–525 (1968)Google Scholar
  4. Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics24, 86–102 (1976)Google Scholar
  5. Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol.100, 5–23 (1975b)Google Scholar
  6. Eckert, H.: Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik14, 1–23 (1973)Google Scholar
  7. Eckert, H.: Identifizierte, bewegungssensitive Interneurone als neurophysiologische Korrelate für das Bewegungssehen der Insekten. Verh. Dtsch. Zool. Ges., Hamburg, p. 86 (1976)Google Scholar
  8. Eckert, H.: Identification of horizontal and vertical movement detection systems in insects. Society for Neuroscience Abstracts, 7th Annual Meeting, Anaheim (1977)Google Scholar
  9. Eckert, H.: Response properties of dipteran giant visual interneurones. Nature271, 358–360 (1978)Google Scholar
  10. Eckert, H.: Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Dipteren. Habilitationsschrift, Ruhr-Universität Bochum (1979)Google Scholar
  11. Eckert, H., Bishop, L.G.: Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae). J. Comp. Physiol.126, 57–86 (1978)Google Scholar
  12. Fermi, G., Reichardt, W.: Optomotorische Reaktionen der FliegeMusca domestica. Kybernetik2, 15–28 (1963)Google Scholar
  13. Fligge, B.: Neue Experimente zur Landereaktion bei Fliegen. Staatsexamensarbeit, Ruhr-Universität Bochum (1978)Google Scholar
  14. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteur dans l'oeil composé deDrosophila. Kybernetik8, 1–13 (1971)Google Scholar
  15. Götz, K.G.: Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik2, 22–92 (1964)Google Scholar
  16. Götz, K.G.: Flight control inDrosophila by visual perception of motion. Kypernetik4, 199–208 (1968)Google Scholar
  17. Götz, K.G.: Visual control of orientation patterns. In: Information processing in the visual system of arthropods. Wehner, R. (ed.), pp. 255–263. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  18. Hamdorf, K.: In: Praktikum der Zoophysiologie. Hanke, W., Hamdorf, K., Horn, E., Schlieper, C. (eds.). Stuttgart, New York: Gustav Fischer 1976Google Scholar
  19. Hassenstein, B.: Ommatidienraster und afferente Bewegungsintegration. Z. Vergl. Physiol.33, 301–326 (1951)Google Scholar
  20. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des RüsselkäfersChlorophanus. Z. Naturforsch.11b, 513–524 (1956)Google Scholar
  21. Hausen, K.: Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula Platte von Dipteren. Verh. Dtsch. Zool. Ges., Hamburg, p. 65 (1976a)Google Scholar
  22. Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurones in the lobula plate of the blowflyCalliphora erythrocephala. Z. Naturforsch.31c, 629–633 (1976b)Google Scholar
  23. Hengstenberg, R.: Spike responses of ‘non-spiking’ visual interneurone. Nature270, 338–340 (1977)Google Scholar
  24. Hertz, M.: Zur Physiologie des Formen- und Bewegungssehens. Z. Vergl. Physiol.20, 579–615 (1934)Google Scholar
  25. Kirschfeld, K.: Optics of the compound eye. In: Information processing in the visual system of arthropods. Wehner, R. (ed.), pp. 61–74. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  26. Mastebroek, H.A.K., Zaagman, W.H. Kuiper, J.W.: Intensity and structure of visually evoked neural activity: rivals in modelling a neural system. Vision Res.17, 29–35 (1977)Google Scholar
  27. McCann, G.D.: The fundamental mechanism of motion detection in the insect visual system. Kybernetik12, 64–73 (1973)Google Scholar
  28. McCann, G.D., McGinitie, G.F.: Optomotor response studies of insect vision. Proc. R. Soc. Lond. (Biol.)163, 369–401 (1965)Google Scholar
  29. McCann, G.D., Dill, J.C.: Fundamental properties of intensity, form and motion perception in the visual nervous systems ofCalliphora phaenicia andMusca domestica. J. Gen. Physiol.53, 385–413 (1969)Google Scholar
  30. McCann, G.D., Foster, S.F.: Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik8, 193–203 (1971)Google Scholar
  31. Reichardt, W.: Detection of single quanta by the compound eye of the flyMusca. In: The functional organization of the compound eye. Bernhard, C.D. (ed.). Proceedings of the Intern. YMP held in Stockholm. Int. Symp. Ser.7, 267–289 (1965)Google Scholar
  32. Reichardt, W., Poggio, T.: Visual control of orientation behaviour in the fly. Q. Rev. Biophys.9, 311–375 (1976)Google Scholar
  33. Reichardt, W., Varjú, D.: Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z. Naturforsch.14b, 674–689 (1959)Google Scholar
  34. Wehrhahn, C.: Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybernetics29, 237–247 (1978)Google Scholar
  35. Zaagman, W.H., Mastebroek, H.A.K., Buyse, T., Kuiper, J.W.: Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J. Comp. Physiol.116, 39–50 (1977)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hendrik Eckert
    • 1
  1. 1.Ruhr-Universität Bochum, Lehrstuhl für TierphysiologieBochum 1Germany

Personalised recommendations