Advertisement

Journal of comparative physiology

, Volume 135, Issue 1, pp 1–19 | Cite as

Die Spiegeloptik des Flußkrebsauges

  • Klaus Vogt
Article

The optical system of the crayfish eye

Summary

In the superposition eye of the crayfish (Astacus leptodactylus), images are formed by radial plane mirrors arranged in an orthogonal pattern. The optical structure of the crayfish eye can be described as a family of virtual reflecting cone envelopes concentric around each direction in space. There exist two reflection mechanisms: total internal reflection at the sides of the crystalline cones and reflection by multilayer mirrors attached to the distal parts of the cones. Image-forming rays have to be reflected twice in the general case, and once in the case of perpendicular position of the plane of incidence and the mirror plane. For rays incident at small angles to the ommatidial axis, this condition is almost satisfied due to a particular axial variation of the refractive index of the crystalline cone, and for rays incident at large angles, due to the spectral reflecting properties of the multilayer reflector.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barer, R., Joseph, S.: Refractometry of living cells. Q. J. Microscop. Sci.95, part 4, 399–423 (1954)Google Scholar
  2. Bernhards, H.: Der Bau des Komplexauges vonAstacus fluviatilis (Potamobius astacus L.). Z. Wiss. Zool.116, 649–707 (1916)Google Scholar
  3. Bone, Q., Denton, E.J.: The osmotic effects of electron microscope fixatives. J. Cell Biol.49, 571–581 (1971)Google Scholar
  4. Born, M., Wolf, E.: Principles of optics, 4. ed. Oxford, New York: Pergamon Press 1970Google Scholar
  5. Carricaburu, P.: Examination of the classical optics of ideal apposition and superposition eyes. In: The compound eye and vision of insects. Horridge, G.A. (ed.), pp. 236–254, Oxford: Clarendon Press 1975Google Scholar
  6. Cleary, P., Deichsel, G., Kunze, P.: The superposition image in the eye ofEphestia kühniella. J. Comp. Physiol.119, 73–84 (1977)Google Scholar
  7. Eguchi, E., Watermann, T.H.: Fine structure patterns in crustacean rhabdoms. In: The functional organization of the compound eye. Bernhard, C.G. (ed.). Oxford, New York: Pergamon Press 1966Google Scholar
  8. Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insecten. Leipzig, Wien: Franz Deuticke 1891Google Scholar
  9. Fletcher, A., Murphy, T., Young, A.: Solutions of two optical problems. Proc. R. Soc. (Lond.) A223, 216–225 (1954)Google Scholar
  10. Goldsmith, T.H.: The effects of screening pigments on the spectral sensitivity of some Crustacea with scotopic (superposition) eyes. Vision Res.18, 475–482 (1978)Google Scholar
  11. Goldsmith, T.H., Fernández, H.R.: Comparative studies of crustacean spectral sensitivity. Z. Vergl. Physiol.60, 156–175 (1968)Google Scholar
  12. Horridge, G.A., Giddings, L., Stange, G.: The superposition eye of Skipper butterflies. Proc. R. Soc. Lond. (Biol.)182, 457–495 (1972)Google Scholar
  13. Huxley, A.F.: A theoretical treatment of the reflection of light by multilayer structures. J. Exp. Biol.48, 227–245 (1968)Google Scholar
  14. Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch.29 c, 592–596 (1974)Google Scholar
  15. Krebs, W.: The fine structure of the retinula of the compound eye ofAstacus fluviatilis. Z. Zellforsch.133, 399–414 (1972)Google Scholar
  16. Kunze, P.: Comparative studies of arthropod superposition eyes. Z. Vergl. Physiol.76, 347–357 (1972)Google Scholar
  17. Kunze, P.: Apposition and superposition eyes. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, A. (ed.). Berlin, Heidelberg, New York: Springer 1979Google Scholar
  18. Kunze, P., Hausen, K.: Inhomogeneous refractive index in the crystalline cone of a moth eye. Nature231, 392–393 (1971)Google Scholar
  19. Land, M.F.: The physics and biology of animal reflectors. In: Progress in biophysics and molecular biology, Vol. 24. Butler, J.A.V., Noble, D. (eds.), pp. 75–106. Oxford, New York: Pergamon Press 1972Google Scholar
  20. Land, M.F.: Superposition images are formed by reflection in the eyes of some oceanic decapod Crustacea. Nature263, 764–765 (1976)Google Scholar
  21. Olivo, R.F., Larsen, M.E.: Brief exposure to light initiates screening pigment migration in retinal cells of the crayfish,Procambarus. J. Comp. Physiol.125, 91–96 (1978)Google Scholar
  22. Page, T.L., Larimer, J.L.: Neural control of circadian rhythmicity in the crayfish. II. The ERG amplitude rhythm. J. Comp. Physiol.97, 81–96 (1975)Google Scholar
  23. Parker, G.H.: The histology and development of the eye in the Lobster. Bull. Mus. Comp. Zool. Harvard, 1–60 (1890)Google Scholar
  24. Parker, G.H.: The retina and optic ganglia in decapods especially inAstacus. Mitt. Zool. Station Neapel12, 1–73 (1897)Google Scholar
  25. Scivessy, G.: Kristalloptik. In: Handbuch der Physik, Bd. 20. Geiger, H., Scheel, K., (Hrsg.), S. 635–904. Berlin: Springer 1928Google Scholar
  26. Schmidt, W.J.: Das Glanzepithel und die Schillerfarben der Sapphirinen nebst Bemerkungen über die Erzeugung von Strukturfarben durch Guanin bei anderen Tieren. Verh. Naturhist. Ver. Bonn82, 227–300 (1926)Google Scholar
  27. Schmidt, W.J.: Altes und Neues über Strukturfarben im Tierreich. Gießener Naturwissenschaftliche Vorträge, Heft 6. Gießen: Wilhelm Schmitz 1949Google Scholar
  28. Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43 (1969)Google Scholar
  29. Van Harreveld, A.: A physiological solution for fresh water crustacea. Proc. Soc. Exp. Biol. (N.Y.)34, 428–432 (1936)Google Scholar
  30. Vogt, K.: Optische Untersuchungen an der Cornea der MehlmotteEphestia kühniella. J. Comp. Physiol.88, 201–216 (1974)Google Scholar
  31. Vogt, K.: Zur Optik des Flußkrebsauges. Z. Naturforsch.30c, 691 (1975)Google Scholar
  32. Vogt, K.: Ray path and reflection mechanisms in crayfish eyes. Z. Naturforsch.32c, 466–468 (1977)Google Scholar
  33. Walcott, B.: Unit studies on light-adaptation in the retina of the crayfish,Cherax destructor. J. Comp. Physiol.94, 207–218 (1974)Google Scholar
  34. Waterman, T.H., Fernández, H.R.: E-vector and wavelength discrimination by retinular cells of the crayfishProcambarus. Z. Vergl. Physiol.68, 154–174 (1970)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Klaus Vogt
    • 1
  1. 1.Biologisches Institut der UniversitätStuttgart 60Bundesrepublik Deutschland

Personalised recommendations