Die Spiegeloptik des Flußkrebsauges
- 148 Downloads
- 27 Citations
The optical system of the crayfish eye
Summary
In the superposition eye of the crayfish (Astacus leptodactylus), images are formed by radial plane mirrors arranged in an orthogonal pattern. The optical structure of the crayfish eye can be described as a family of virtual reflecting cone envelopes concentric around each direction in space. There exist two reflection mechanisms: total internal reflection at the sides of the crystalline cones and reflection by multilayer mirrors attached to the distal parts of the cones. Image-forming rays have to be reflected twice in the general case, and once in the case of perpendicular position of the plane of incidence and the mirror plane. For rays incident at small angles to the ommatidial axis, this condition is almost satisfied due to a particular axial variation of the refractive index of the crystalline cone, and for rays incident at large angles, due to the spectral reflecting properties of the multilayer reflector.
Preview
Unable to display preview. Download preview PDF.
Literatur
- Barer, R., Joseph, S.: Refractometry of living cells. Q. J. Microscop. Sci.95, part 4, 399–423 (1954)Google Scholar
- Bernhards, H.: Der Bau des Komplexauges vonAstacus fluviatilis (Potamobius astacus L.). Z. Wiss. Zool.116, 649–707 (1916)Google Scholar
- Bone, Q., Denton, E.J.: The osmotic effects of electron microscope fixatives. J. Cell Biol.49, 571–581 (1971)Google Scholar
- Born, M., Wolf, E.: Principles of optics, 4. ed. Oxford, New York: Pergamon Press 1970Google Scholar
- Carricaburu, P.: Examination of the classical optics of ideal apposition and superposition eyes. In: The compound eye and vision of insects. Horridge, G.A. (ed.), pp. 236–254, Oxford: Clarendon Press 1975Google Scholar
- Cleary, P., Deichsel, G., Kunze, P.: The superposition image in the eye ofEphestia kühniella. J. Comp. Physiol.119, 73–84 (1977)Google Scholar
- Eguchi, E., Watermann, T.H.: Fine structure patterns in crustacean rhabdoms. In: The functional organization of the compound eye. Bernhard, C.G. (ed.). Oxford, New York: Pergamon Press 1966Google Scholar
- Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insecten. Leipzig, Wien: Franz Deuticke 1891Google Scholar
- Fletcher, A., Murphy, T., Young, A.: Solutions of two optical problems. Proc. R. Soc. (Lond.) A223, 216–225 (1954)Google Scholar
- Goldsmith, T.H.: The effects of screening pigments on the spectral sensitivity of some Crustacea with scotopic (superposition) eyes. Vision Res.18, 475–482 (1978)Google Scholar
- Goldsmith, T.H., Fernández, H.R.: Comparative studies of crustacean spectral sensitivity. Z. Vergl. Physiol.60, 156–175 (1968)Google Scholar
- Horridge, G.A., Giddings, L., Stange, G.: The superposition eye of Skipper butterflies. Proc. R. Soc. Lond. (Biol.)182, 457–495 (1972)Google Scholar
- Huxley, A.F.: A theoretical treatment of the reflection of light by multilayer structures. J. Exp. Biol.48, 227–245 (1968)Google Scholar
- Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch.29 c, 592–596 (1974)Google Scholar
- Krebs, W.: The fine structure of the retinula of the compound eye ofAstacus fluviatilis. Z. Zellforsch.133, 399–414 (1972)Google Scholar
- Kunze, P.: Comparative studies of arthropod superposition eyes. Z. Vergl. Physiol.76, 347–357 (1972)Google Scholar
- Kunze, P.: Apposition and superposition eyes. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, A. (ed.). Berlin, Heidelberg, New York: Springer 1979Google Scholar
- Kunze, P., Hausen, K.: Inhomogeneous refractive index in the crystalline cone of a moth eye. Nature231, 392–393 (1971)Google Scholar
- Land, M.F.: The physics and biology of animal reflectors. In: Progress in biophysics and molecular biology, Vol. 24. Butler, J.A.V., Noble, D. (eds.), pp. 75–106. Oxford, New York: Pergamon Press 1972Google Scholar
- Land, M.F.: Superposition images are formed by reflection in the eyes of some oceanic decapod Crustacea. Nature263, 764–765 (1976)Google Scholar
- Olivo, R.F., Larsen, M.E.: Brief exposure to light initiates screening pigment migration in retinal cells of the crayfish,Procambarus. J. Comp. Physiol.125, 91–96 (1978)Google Scholar
- Page, T.L., Larimer, J.L.: Neural control of circadian rhythmicity in the crayfish. II. The ERG amplitude rhythm. J. Comp. Physiol.97, 81–96 (1975)Google Scholar
- Parker, G.H.: The histology and development of the eye in the Lobster. Bull. Mus. Comp. Zool. Harvard, 1–60 (1890)Google Scholar
- Parker, G.H.: The retina and optic ganglia in decapods especially inAstacus. Mitt. Zool. Station Neapel12, 1–73 (1897)Google Scholar
- Scivessy, G.: Kristalloptik. In: Handbuch der Physik, Bd. 20. Geiger, H., Scheel, K., (Hrsg.), S. 635–904. Berlin: Springer 1928Google Scholar
- Schmidt, W.J.: Das Glanzepithel und die Schillerfarben der Sapphirinen nebst Bemerkungen über die Erzeugung von Strukturfarben durch Guanin bei anderen Tieren. Verh. Naturhist. Ver. Bonn82, 227–300 (1926)Google Scholar
- Schmidt, W.J.: Altes und Neues über Strukturfarben im Tierreich. Gießener Naturwissenschaftliche Vorträge, Heft 6. Gießen: Wilhelm Schmitz 1949Google Scholar
- Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43 (1969)Google Scholar
- Van Harreveld, A.: A physiological solution for fresh water crustacea. Proc. Soc. Exp. Biol. (N.Y.)34, 428–432 (1936)Google Scholar
- Vogt, K.: Optische Untersuchungen an der Cornea der MehlmotteEphestia kühniella. J. Comp. Physiol.88, 201–216 (1974)Google Scholar
- Vogt, K.: Zur Optik des Flußkrebsauges. Z. Naturforsch.30c, 691 (1975)Google Scholar
- Vogt, K.: Ray path and reflection mechanisms in crayfish eyes. Z. Naturforsch.32c, 466–468 (1977)Google Scholar
- Walcott, B.: Unit studies on light-adaptation in the retina of the crayfish,Cherax destructor. J. Comp. Physiol.94, 207–218 (1974)Google Scholar
- Waterman, T.H., Fernández, H.R.: E-vector and wavelength discrimination by retinular cells of the crayfishProcambarus. Z. Vergl. Physiol.68, 154–174 (1970)Google Scholar