Journal of Low Temperature Physics

, Volume 7, Issue 3–4, pp 291–307

Superconductivity in the TiO and NbO systems

  • J. K. Hulm
  • C. K. Jones
  • R. A. Hein
  • J. W. Gibson
Article

Abstract

This paper presents electrical resistivity and superconductivity studies for the B1 (NaCl) structure oxides of titanium, vanadium, and niobium. In samples of nominal composition TiOx, VOx, and NbOx,x was varied from 0.8 to 1.2. It was found that all three of these oxides exhibit room-temperature electrical resistivities characteristic of metallic behavior. With decreasing temperature, the resistivity drops steeply in the case of NbOx, but remains steady or rises somewhat in the case of TiOx and VOx, depending on the exact value ofx. It is suggested that in TiOx and VOx there is a large resistivity component due to scattering of carriers by disordered vacancies. Superconductivity was observed in NbOx(Tc=1.38 K,x=1.0) and TiOx(Tc=1.0 K,x=1.07). In the latter case the material showed a well-defined maximum ofTc as a function of composition, withTc<0.05 K forx<0.85 andx>1.20. Several VOx samples remained normal to 0.07 K.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Meissner,Wien Harms Handbuch der Exp. Physik 11, 2 (Akad. Verlagsgesellschaft m.b.H. Peipzig, 1935).Google Scholar
  2. 2.
    B. T. Matthias and J. K. Hulm,Phys. Rev. 87, 799 (1952).Google Scholar
  3. 3.
    G. F. Hardy and J. K. Hulm,Phys. Rev. 93, 1004 (1954).Google Scholar
  4. 4.
    J. K. Hulm, C. K. Jones, R. Mazelsky, R. C. Miller, R. A. Hein, and J. W. Gibson,Proc. IXth Int. Conf. Low Temp. Phys. (Plenum Press, New York, 1965), p. 600.Google Scholar
  5. 5.
    P. Ehrlich,Z. Electrochem. 45, 362 (1939).Google Scholar
  6. 6.
    P. Ehrlich,Z. Anorg. Allgem. Chem. 247, 53 (1941).Google Scholar
  7. 7.
    W. Rostoker,Trans. AIME 194, 981 (1952).Google Scholar
  8. 8.
    E. S. Bumps, H. D. Kessler, and M. Hansen,Trans. Am. Soc. Metals 45, 1008 (1953).Google Scholar
  9. 9.
    S. P. Denker,J. Phys. Chem. Solids 25, 1397 (1964).Google Scholar
  10. 10.
    N. Schönberg,Acta. Chem. Scand. 8, 221 (1954).Google Scholar
  11. 11.
    G. Brauer,Z. Anorg. Allgem. Chem. 248, 1 (1941).Google Scholar
  12. 12.
    S. P. Denker,J. Appl. Phys. 37, 142 (1966).Google Scholar
  13. 13.
    S. Kawano, K. Kosuge, and S. Kachi,J. Phys. Soc. Japan 21, 2744 (1966).Google Scholar
  14. 14.
    S. Andersson, B. Collen, U. Kuylenstierna, and A. Magneli,Acta. Chem. Scand. 11, 1641 (1957).Google Scholar
  15. 15.
    D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin,Nature 210, 934 (1966).Google Scholar
  16. 16.
    N. J. Doyle, J. K. Hulm, C. K. Jones, R. C. Miller, and A. Taylor,Phys. Letters 26A, 604 (1968).Google Scholar
  17. 17.
    R. P. Elliott,Trans. Am. Soc. Metals 52, 990 (1959).Google Scholar
  18. 18.
    W. Desorbo,Phys. Rev. 132, 107 (1963).Google Scholar
  19. 19.
    A. L. Giorgi, E. G. Szklarz, E. K. Storms, L. Bowman, and B. T. Matthias,Phys. Rev. 125, 837 (1963).Google Scholar
  20. 20.
    J. K. Hulm and R. D. Blaugher,Phys. Rev. 123, 1569 (1961).Google Scholar
  21. 21.
    R. A. Hein and P. H. E. Meijer,Phys. Rev. 179, 497 (1969).Google Scholar
  22. 22.
    V. Ern and A. C. Switendick,Phys. Rev. 137, A1927 (1965).Google Scholar
  23. 23.
    W. L. McMillan,Phys. Rev. 167, 331 (1968).Google Scholar
  24. 24.
    J. M. Schoen and S. P. Denker,Phys. Rev. 184, 864 (1969).Google Scholar
  25. 25.
    J. K. Hulm, M. S. Walker, and N. Pessall, Proc. of Int. Conf. on Superconductivity, Stanford Univ., August, 1969.Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • J. K. Hulm
    • 1
  • C. K. Jones
    • 1
  • R. A. Hein
    • 2
  • J. W. Gibson
    • 2
  1. 1.Westinghouse Research LaboratoriesPittsburgh
  2. 2.Naval Research LaboratoryWashington, D.C.

Personalised recommendations