Advertisement

Oxidation of Metals

, Volume 23, Issue 3–4, pp 107–139 | Cite as

Transport properties of sulfide scales and sulfidation of metals and alloys

  • S. Mrowec
  • K. Przybylski
Article

Abstract

Defect and transport properties of metal sulfides are discussed, showing the differences from and similarities with oxide systems. The sulfidation kinetics and mechanism of metals and alloys are compared with oxidation processes.

Key words

defects diffusion in sulfides and oxides sulfidation oxidation of metals and alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wagner,Z. physik. Chem. 21, 25 (1933).Google Scholar
  2. 2.
    H. Schmalzried and A. Navrotsky,Festkörperthermodynamik (Verlag Chemie, Weinheim, 1975), p. 157.Google Scholar
  3. 3.
    G. W. Samsonow and S. W. Drozdowa,Sulfidy (Metallurgia, Moskwa, 1972).Google Scholar
  4. 4.
    L. M. Litz and J. M. Blocker, inHigh Temperature Materials Technology, J. E. Cambell and E. M. Sherwood, eds. (Wiley, New York, 1968), chap. 13.Google Scholar
  5. 5.
    G. W. Samsonowa,Fiziko-Chimiczeskije Swoistwa Okisłow (Metallurgia, Moskwa, 1978).Google Scholar
  6. 6.
    A. Davin and D. Coutsouradis,Cobalt 17, 23 (1962).Google Scholar
  7. 7.
    T. Rosenqvist,J. Iron Steel Inst. 179, 37 (1954).Google Scholar
  8. 8.
    H. Le Brusq and J. P. Delmaire,Rev. Inst. Htes. Temp. Refract. 11, 193 (1974).Google Scholar
  9. 9.
    H. Rau,J. Phys. Chem. Solids 28, 903 (1967);35, 1415 (1974).Google Scholar
  10. 10.
    H. Rau,J. Phys. Chem. Solids 39, 339 (1978).Google Scholar
  11. 11.
    H. Rau,J. Phys. Chem. Solids 37, 425 (1976).Google Scholar
  12. 12.
    H. Rau,J. Phys. Chem. 36, 1199 (1975).Google Scholar
  13. 13.
    H. Rau,J. Phys. Chem. 37, 931 (1976).Google Scholar
  14. 14.
    S. Mrowec, A. Stokłosa and K. Godlewski,Crystal Lattice Defects 5, 293 (1974).Google Scholar
  15. 15.
    P. Vallet and P. Raccah,Mem. Sci. Rev. Met. 62, 1 (1965).Google Scholar
  16. 16.
    M. Laffitte,Bull. Soc. Chim. France, no. 1223, 1211 (1959).Google Scholar
  17. 17.
    R. Y. Lin, C. Hu and Y. A. Chang,Met. Trans. 9B, 531 (1978).Google Scholar
  18. 18.
    H. Rau,J. Less-Common Met. 55, 205 (1977).Google Scholar
  19. 19.
    P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2410 (1980).Google Scholar
  20. 20.
    A. Z. Hed and D. S. Tannhauser,J. Electrochem. Soc. 114, 314 (1967).Google Scholar
  21. 21.
    A. Z. Hed and D. S. Tannhauser,J. Chem. Phys. 47, 2090 (1967).Google Scholar
  22. 22.
    H. Le Brusq, J. P. Delmaire and F. Marion,Compt. Rend. Acad. Sci. Paris 273, 139 (1971).Google Scholar
  23. 23.
    G. G. Libowitz,J. Solid State Chem. 1, 50 (1969).Google Scholar
  24. 24.
    M. Kleman,Mem. Sci. Rev. Met. 62, 457 (1965).Google Scholar
  25. 25.
    S. P. Mitoff,J. Chem. Phys. 35, 882 (1961).Google Scholar
  26. 26.
    Y. D. Tretyakov and R. A. Rapp,Trans. AIME 245, 1235 (1969).Google Scholar
  27. 27.
    M. L. Volpe and J. Reddy,J. Chem. Phys. 53, 1117 (1970).Google Scholar
  28. 28.
    B. Fisher and D. S. Tannhauser,J. Chem. Phys. 44, 1663 (1966).Google Scholar
  29. 29.
    N. G. Eror and J. B. Wagner Jr.,J. Phys. Chem. Solids 29, 1597 (1968).Google Scholar
  30. 30.
    N. Hansen and K. Anderko,Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958).Google Scholar
  31. 31.
    B. E. F. Fender and F. D. Riley, Thermodynamic properties of Mn1−yO, inThe Chemistry of Extended Defects in Non-Metallic Solids (North-Holland, Amsterdam, 1970), p. 54.Google Scholar
  32. 32.
    M. Danielewski, S. Mrowec and A. Stokłosa,Solid State Ionics 1, 287 (1980).Google Scholar
  33. 33.
    E. Fryt, W. W. Smeltzer and J. S. Kirkaldy,J. electrochem. Soc. 126, 673 (1979).Google Scholar
  34. 34.
    G. G. Libowitz, Energetics of defect formation and interaction in nonstoichiometric pyrhotite, inReactivity of Solids (Chapman and Hall, London, 1972), p. 107.Google Scholar
  35. 35.
    R. C. Thiel,Phys. Status Solids 40, 17 (1970).Google Scholar
  36. 36.
    H. Rau,J. Phys. Chem. Solids 36, 1199 (1975).Google Scholar
  37. 37.
    K. N. Strafford and A. F. Hampton,J. Mat. Sci. 8, 1534 (1973).Google Scholar
  38. 38.
    M. Mikami, K. Igaki and N. Ohashi,J. Phys. Soc. Japan 32, 1217 (1972).Google Scholar
  39. 39.
    P. K. Kofstad and K. Lillerud,Oxid. Met. 17, 177 (1982).Google Scholar
  40. 40.
    N. Peterson, private communication.Google Scholar
  41. 41.
    D. J. Young, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 120, 1221 (1973).Google Scholar
  42. 42.
    J. Bransky and J. M. Wimmer,J. Phys. Chem. Solids 33, 801 (1972).Google Scholar
  43. 43.
    C. M. Osburn and R. W. Vest,J. Phys. Chem. Solids 32, 1343 (1971).Google Scholar
  44. 44.
    R. H. Condit, R. R. Hobbins, and C. E. Birchenall,Oxid. Met. 8, 409 (1974).Google Scholar
  45. 45.
    M. Danielewski, S. Mrowec, and A. Stokłosa,Oxid. Met. 17, 77 (1982).Google Scholar
  46. 46.
    M. Danielewski and A. Stokłosa,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 27, 861 (1979).Google Scholar
  47. 47.
    R. A. Meussner and C. E. Birchenall,Corr. 13, 677 (1957).Google Scholar
  48. 48.
    E. T. Turkdogan,Trans. AIME 242, 1665 (1968).Google Scholar
  49. 49.
    A. Sterten,Corr. Sci. 14, 377 (1974).Google Scholar
  50. 50.
    J. Janowski, S. Mrowec, and A. Stokłosa,Bull. Acad. Polon. Sci. Ser., Sci. Chim. 29, 91 (1981).Google Scholar
  51. 51.
    P. Desmarescaux, J. B. Bocquet, and P. Lacombe,Bull. Soc. Chim. France 15, 1106 (1965).Google Scholar
  52. 52.
    S. M. Klotsman, A. N. Timofiejew, and J. S. Trachtenberg,Fiz. Mietałł.-Mietałłowied. 16, 743 (1963).Google Scholar
  53. 53.
    K. Fueki, Y. Oguri, and T. Mukaibo,Bull. Chem. Soc. Japan 41, 569 (1968).Google Scholar
  54. 54.
    B. D. Bastow and G. C. Wood,Oxid. Met. 9, 473 (1975).Google Scholar
  55. 55.
    K. Nishida, T. Narita, T. Tani, and G. Sasaki,Oxid. Met. 14, 65 (1980).Google Scholar
  56. 56.
    K. Ohta, K. Fueki, and T. Mukaibo,Denki Kagaku 38, 822 (1970).Google Scholar
  57. 57.
    F. A. Elrefaie and W. W. S. Smeltzer,Oxid. Met. 16, 267 (1981).Google Scholar
  58. 58.
    M. Danielewski,Bull. Acad. Polon. Sci. Ser. Sci. Chim. (in press).Google Scholar
  59. 59.
    M. Danielewski, IXth International Congress on Metallic Corrosion, Toronto, June 1984.Google Scholar
  60. 60.
    M. Danielewski, S. Mrowec, and K. Przybylski, Xth International Symposium on Reactivity of Solids, 27 Aug.–1 Sept. 1984, Dijon, France.Google Scholar
  61. 61.
    H. Matzke, Diffusion in nonstoichiometric oxides, inNonstoichiometric Oxides, T. Sörensen, ed. (Academic Press, New York, 1981), p. 155.Google Scholar
  62. 62.
    T. Biegun, A. Brückman, and S. Mrowec,Oxid. Met. 12, 157 (1978).Google Scholar
  63. 63.
    K. N. Strafford and A. F. Hampton,J. Less-Common Met. 21, 305 (1970).Google Scholar
  64. 64.
    J. A. Chitty and W. W. Smeltzer,J. Electrochem. Soc. 120, 1362 (1973).Google Scholar
  65. 65.
    M. S. Kovalchenko, W. W. Syczew, D. Z. Jurczenko, and I. G. Tkaczenko,Izv. Akad. Nauk. USSR. Metally 5, 221 (1974).Google Scholar
  66. 66.
    R. E. Carter and F. D. Richardson,J. Met. 6, 1244 (1954).Google Scholar
  67. 67.
    W. K. Chen, N. L. Peterson, and W. T. Reeves,Phys. Rev. 186, 887 (1969).Google Scholar
  68. 68.
    S. Mrowec and K. Przybylski,Oxid. Met. 11, 383 (1977).Google Scholar
  69. 69.
    J. S. Choi and W. J. Moore,J. Phys. Chem. 66, 1308 (1962).Google Scholar
  70. 70.
    K. Fueki and J. B. Wagner,J. Electrochem. Soc. 112, 384 (1965).Google Scholar
  71. 71.
    R. Lindner and A. Akerströn,Z. Phys. Chem., N.F. 6, 162 (1956).Google Scholar
  72. 72.
    W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).Google Scholar
  73. 73.
    J. B. Price and J. B. Wagner,J. Electrochem. Soc. 117, 242 (1970).Google Scholar
  74. 74.
    J. P. Bocquet, M. Kawahara, and P. Lacombe,Compt. Rend., Acad. Sci. Paris 265, 1318 (1967).Google Scholar
  75. 75.
    N. L. Peterson and W. K. Chen.,J. Phys. Chem. Solids 43, 29 (1982).Google Scholar
  76. 76.
    S. Mrowec and A. Stokłosa,Oxid. Met. 3, 291 (1971).Google Scholar
  77. 77.
    H. Rickert and W. Weppner,Z. Naturforsch. 29a, 1849 (1974).Google Scholar
  78. 78.
    P. F. Landler and K. L. Komarek,Trans. AIME 236, 138 (1966).Google Scholar
  79. 79.
    R. L. Levin and J. B. Wagner,Trans. AIME 233, 159 (1965).Google Scholar
  80. 80.
    L. W. Laub and J. B. Wagner,Oxid. Met. 7, 1 (1973).Google Scholar
  81. 81.
    R. H. Cambbell, Ph.D. thesis, Arizona State University, 1968.Google Scholar
  82. 82.
    J. B. Price and J. B. Wagner,Z. Phys. Chem., N.F. 49, 257 (1966).Google Scholar
  83. 83.
    G. J. Koel and P. J. Gellings,Oxid. Met. 5, 3 (1972).Google Scholar
  84. 84.
    E. Fryt, S. Mrowec, and T. Walec,Oxid. Met. 7, 117 (1973).Google Scholar
  85. 85.
    J. M. Wimmer, R. N. Blumenthal, and J. Bransky,J. Phys. Chem. Solids,36, 269 (1975).Google Scholar
  86. 86.
    G. Petot-Ervas, O. Radji, and B. Sossa, Fourth Int. 1982 Conf. LATDIC, Dublin, Radiation Effects, 1982 (in press).Google Scholar
  87. 87.
    A. Dominquez-Rodriguez, C. Monty, and J. Philibert,Phil. Mag. 46, 869 (1982).Google Scholar
  88. 88.
    J. Dereń, Z. Jarzebski, S. Mrowec, and T. Walec,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 19, 147 (1971).Google Scholar
  89. 89.
    J. Nowotny and J. B. Wagner,J. Am. Ceram. Soc. 56, 397 (1973).Google Scholar
  90. 90.
    Y. Nikeda and K. Nii,Trans. Japan Inst. Met. 17, 419 (1976).Google Scholar
  91. 91.
    R. Fahri and G. Petot-Ervas,J. Phys. Chem. Solids 39, 1169 (1978).Google Scholar
  92. 92.
    J. Nowotny and A. Sadowski,J. Am. Ceram. Soc. 62, 24 (1979).Google Scholar
  93. 93.
    A. Stokłosa,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 29, 141 (1981).Google Scholar
  94. 94.
    J. B. Price, Ph.D. thesis, Northwestern University, 1968.Google Scholar
  95. 95.
    J. Bransky and N. M. Tallan,Vacuum Microbalance Technique, 8 (1969).Google Scholar
  96. 96.
    A. Stokłosa and J. Stringer,Oxid. Met. 11, 277 (1977).Google Scholar
  97. 97.
    L. Czerski, S. Mrowec, and T. Werber,J. Electrochem. Soc. 109, 273 (1962).Google Scholar
  98. 98.
    J. Gerlach and H. J. Hamel,Metall. 23, 1006 (1969);24, 488 (1970).Google Scholar
  99. 99.
    S. Mrowec and T. Werber,Archiw. Hutn. 9, 289 (1964).Google Scholar
  100. 100.
    S. Mrowec, T. Werber, and M. Zastawnik,Corr. Sci. 6, 47 (1966).Google Scholar
  101. 101.
    K. Nishida, K. Nakayama, and T. Narita,Corr. Sci. 13, 759 (1973).Google Scholar
  102. 102.
    S. Mrowec and H. Rickert,Z. Phys. Chem., N.F. 28, 422 (1961).Google Scholar
  103. 103.
    J. Paidassi,Rev. Metall. 54, 569 (1957).Google Scholar
  104. 104.
    M. Schmahl, H. Baumann, and H. Schenck,Arch. Eisenhüttenwes. 29, 41 (1958).Google Scholar
  105. 105.
    D. K. Footner, D. R. Holmes, and D. Mortimer,Nature 216, 54 (1967).Google Scholar
  106. 106.
    S. Mrowec and K. Przybylski,Oxid. Met. 11, 365 (1977).Google Scholar
  107. 107.
    C. S. Giggins and F. S. Pettitt,Trans. AIME 245 2495 (1969).Google Scholar
  108. 108.
    L. Cadiou and J. Paidassi,Mem. Sci. Rev. Metall. 66, 217 (1969).Google Scholar
  109. 109.
    D. Caplan and G. I. Sproule,Oxid. Met. 9, 5 (1975).Google Scholar
  110. 110.
    K. Fueki and J. B. Wagner,J. Electrochem. Soc. 112, 970 (1965).Google Scholar
  111. 111.
    T. Narita and K. Nishida,Trans. Japan Inst. Met. 14, 439, 447 (1973).Google Scholar
  112. 112.
    S. Mrowec and T. Werber,Fiz. Mietałł.-Mietałłowied. 14, 770 (1962).Google Scholar
  113. 113.
    A. Devin,Cobalt 30, 19 (1966).Google Scholar
  114. 114.
    D. P. Whittle, S. K. Verma, and J. Stringer,Corros. Sci. 13, 247 (1973).Google Scholar
  115. 115.
    S. Mrowec, T. Walec, and T. Werber,Oxid. Met. 1, 93 (1969).Google Scholar
  116. 116.
    T. Narita and K. Nishida,Oxid. Met. 6, 157, 181 (1973).Google Scholar
  117. 117.
    T. Narita, W. W. Smeltzer, and K. Nishida,Oxid. Met. 17, 299 (1982).Google Scholar
  118. 118.
    S. Mrowec and M. Wedrychowska,Oxid. Met. 13, 481 (1979).Google Scholar
  119. 119.
    E. M. Jallouli, J. P. Larpin, M. Lambertin, and J. C. Colson,J. Electrochem. Soc. 126, 2254 (1979).Google Scholar
  120. 120.
    T. Biegun and A. Brückman,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 28, 377 (1980);29, 69 (1981).Google Scholar
  121. 121.
    W. W. Smeltzer, T. Narita, and K. Przybylski, High temperature sulfidation properties of iron-chromium-base alloys, inProc. Corrosion-Erosion, Wear of Materials in Emerging Fossil Energy Systems, A. V. Levy, ed. (NACE, Houston, 1982), p. 860.Google Scholar
  122. 122.
    E. Fryt, W. S. Bhide, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 126, 684 (1979).Google Scholar
  123. 123.
    T. Narita, K. Przybylski, and W. W. Smeltzer,Oxid. Met (in press).Google Scholar
  124. 124.
    A. Kumar, M. Nasrallah, and D. Douglass,Oxid. Met. 8, 139 (1974).Google Scholar
  125. 125.
    K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).Google Scholar
  126. 126.
    S. K. Verma, D. P. Whittle, and J. Stringer,Oxid. Met. 5, 169 (1972).Google Scholar
  127. 127.
    K. N. Strafford and J. R. Bird,J. Less-Common Met. 68, 223 (1979).Google Scholar
  128. 128.
    M. Lambertin, A. Stokłosa, and W. W. Smeltzer,Oxid. Met. 15, 355 (1981).Google Scholar
  129. 129.
    P. Kofstad and A. Z. Hed,Werkstoffe und Korrosion 21, 894 (1970).Google Scholar
  130. 130.
    G. M. Ecer and G. H. Meier,Oxid. Met. 13, 119 (1979).Google Scholar
  131. 131.
    M. O'Keeffe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • S. Mrowec
    • 1
  • K. Przybylski
    • 1
  1. 1.Institute of Materials ScienceAcademy of Mining and MetallurgyKrakowPoland

Personalised recommendations