Colloid and Polymer Science

, Volume 271, Issue 11, pp 1024–1034 | Cite as

Structural analysis of anisometric colloidal iron(III)-hydroxide particles and particle-aggregates incorporated in poly(vinyl-acetate) networks

  • W. Haas
  • M. Zrinyi
  • H. -G. Kilian
  • B. Heise
Original Contributions

Abstract

Anisometrical colloidal iron(III)hydroxide particles and particle aggregates were incorporated in elastic poly(vinyl acetate) networks. A novel method has been developed to fix the colloidal structure of deformed samples. Digitalized image analysis has been applied in order to evaluate the micrographs. The rod-like particles allow for studying the local deformation and orientation due to uniaxial and triaxial deformations. The density correlation function as well as the micrographs show that the structure of aggregates is not influenced by the strain. Due to strong attractive interactions between the colloidal particles the developing strain is not enough to destroy the aggregate structure. The orientation behavior of the model filled networks can be satisfactorily described by using the affinity principle.

Key words

Filled networks TEM fractal aggregates uniaxial and triaxial deformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hepburn C, Reynolds RJ (1979) Elastomers: Criteria for Engineering Design. Applied Science PublishersGoogle Scholar
  2. 2.
    Kraus G (1963) Journal of Applied Polymer Science 7:861Google Scholar
  3. 3.
    Kilian H-G (1987) Colloid and Polymer Science 265:410Google Scholar
  4. 4.
    Kilian H-G (1987) Progr Colloid Polym Sci 75:213Google Scholar
  5. 5.
    Kilian H-G, Schenk H (1988) J Appl Polym Sci 35:345Google Scholar
  6. 6.
    Horkay F, Geissler E, Hecht A-M, Pruvost P, Zrinyi M (1991) Polymer 32:835 (1991)Google Scholar
  7. 7.
    Mark JE, Pan S-J (1982) Makromol Chemie, Rapid Comm 3:681Google Scholar
  8. 8.
    Mark JE (1985) British Polymer Journal 17:144Google Scholar
  9. 9.
    Mark JE, Erman B (1988) Rubberlike elasticity a molecular primer. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, SingaporeGoogle Scholar
  10. 10.
    Zrinyi M, Kilian H-G, Dierksen K, Horkay F (1991) Makromol Chem Makromol Symp 45:205Google Scholar
  11. 11.
    Rohrsetzer S, Wolfram E, Nagy M, Kubicza M (1969) Annales Univ Sci L Eötvös Sect Chimica 11:73Google Scholar
  12. 12.
    Horkay F, Zrinyi M (1985) Macromolecules 15:1306Google Scholar
  13. 13.
    Egle W, Rilk A, Bihr J, Menzel M (1984) Electron Microsc Soc Am Proc 42:566Google Scholar
  14. 14.
    Shaw DJ (1980) Introduction to Colloid and Surface Chemistry. Butterworths & Co Ltd, London-BostonGoogle Scholar
  15. 15.
    Sonntag H, Strenge K (1987) Coagulation Kinetics and Structure Formation. Plenum Press, New York and LondonGoogle Scholar
  16. 16.
    Maeda Y, Hachisu S (1983) Colloids and Surfaces 6:1Google Scholar
  17. 17.
    Zrinyi M, Kabai M, Faix, Horkay F (1988) Progr Coll & Polym Sci 77:165Google Scholar
  18. 18.
    Vicsek T (1989) Fractal Growth Phenomena. World ScientificGoogle Scholar
  19. 19.
    Meakin P (1988) Advances in Colloid and Interface Science 28:249Google Scholar
  20. 20.
    Julien R, Botet R (1987) Aggregation and Fractal Aggregates. World Scientific Co Pte LtdGoogle Scholar
  21. 21.
    Heise B, Kilian H-G, Pietrala M (1977) J Colloid & Polymer Sci 62:16Google Scholar
  22. 22.
    Oka S (1939) Kolloid Z 2:86Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • W. Haas
    • 1
  • M. Zrinyi
    • 2
  • H. -G. Kilian
    • 1
  • B. Heise
    • 1
  1. 1.Abteilung Experimentelle PhysikUniversität UlmUlmFRG
  2. 2.Department of Physical ChemistryTechnical University of BudapestHungary

Personalised recommendations