Journal of Low Temperature Physics

, Volume 17, Issue 3–4, pp 247–254 | Cite as

Fluctuation-induced conductivity above the critical temperature in small-particle arrays

  • J. Kirtley
  • Y. Imry
  • P. K. Hansma


Small tin particle arrays show a component of conductivity above the critical temperature that can be described by an Aslamasov-Larkin-type fluctuation-induced conductivity term Δσ0 in the zero-dimensional limit. A simple model is introduced to unfold experimental results for Δσ0 from experimental data. Those results show that it is proportional to l/(TT c )2 over a broad temperature range, in agreement with theoretical predictions. Its absolute magnitude is difficult to measure precisely, but our estimate for it is of the same order of magnitude as the theoretical prediction. Other order-of-magnitude estimates show that Josephson coupling, thermal noise, and Maki term effects can be neglected forTT c >20 mK.


Experimental Data Simple Model Critical Temperature Magnetic Material Theoretical Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Miller and J. N. Pierce, Fluctuation Effects in the Complex Impedance of Superconducting Tin Whisker Filaments nearT c, to be published.Google Scholar
  2. 2.
    G. Deutscher and Y. Imry,Phys. Letters 42A, 413 (1973); G. Deutscher, Y. Imry, and L. Gunther, to be published.Google Scholar
  3. 3.
    R. J. Londergan and J. S. Langer,Phys. Rev. B 5, 5377 (1972).Google Scholar
  4. 4.
    P. K. Hansma,Solid State Commun. 13, 397 (1973).Google Scholar
  5. 5.
    P. K. Hansma and J. R. Kirtley, to be published inJ. Appl. Phys. Google Scholar
  6. 6.
    T. D. Clark and D. R. Tilley,Phys. Letters 28A, 62 (1968).Google Scholar
  7. 7.
    P. Pellan, G. Dousselan, H. Cortes, and J. Rossenblatt,Solid. State Commun. 11, 427 (1972).Google Scholar
  8. 8.
    L. G. Aslamasov and A. I. Larkin,Soviet Phys.—Solid State 10, 875 (1968).Google Scholar
  9. 9.
    K. Maki,Progr. Theoret. Phys. (Kyoto)39, 897 (1968).Google Scholar
  10. 10.
    E. Abrahams and J. W. F. Woo,Phys. Letters 27A, 117 (1968).Google Scholar
  11. 11.
    A. Schmid,Z. Physik 215, 210 (1968).Google Scholar
  12. 12.
    B. Mühlschlegel, D. J. Scalapino, and R. Denton,Phys. Rev. B 6, 1767 (1972).Google Scholar
  13. 13.
    B. R. Patton,Phys. Rev. Letters 27, 1273 (1971).Google Scholar
  14. 14.
    J. P. Hurault, K. Maki, and M. T. Beal-Monod,Phys. Rev. B 3, 762 (1971).Google Scholar
  15. 15.
    V. Ambegaokar and B. I. Halperin,Phys. Rev. Letters 22, 1364 (1969).Google Scholar
  16. 16.
    C. M. Falco, W. H. Parker, S. Trullinger, P. K. Hansma, to be published inPhys. Rev. Google Scholar
  17. 17.
    I. G. Naumanko and V. I. Petinov,Zh. Eksperim. i Teor. Fiz. Pisma 15, 464 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • J. Kirtley
    • 1
  • Y. Imry
    • 1
  • P. K. Hansma
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSanta Barbara

Personalised recommendations