Astrophysics and Space Science

, Volume 213, Issue 2, pp 273–298 | Cite as

Viscous computations of resonant absorption of MHD waves in flux tubes by fem

  • R. Erdélyi
  • M. Goossens


A numerical code is presented for computing the stationary state of resonant absorption of MHD waves in cylindrical flux tubes in linear, compressible, and viscous MHD. The full viscosity stress tensor is included in the code with the five viscosity coefficients as given by Braginskii (1965). Also non-zero plasma pressure effects are taken into account, and the finite elements discretization with the Galerkin method has been used. The implementation of the stress tensor and the numerical accuracy of the tensorial viscous MHD code are scrutinized in test case. The test case involves the absorption of waves in cylindrical flux tubes considered by Lou (1990) and Goossens and Poedts (1992) in the context of absorption of acoustic oscillations. The results for the absorption rates obtained with the tensorial viscous code agree completely with the results obtained by Lou in a scalar viscous MHD and by Goossens and Poedts in resistive MHD. This verifies not only the complicated tensor viscous code but again proves that the absorption rate is independent of the actual dissipation mechanism.


Stress Tensor Absorption Rate Galerkin Method Flux Tube Viscosity Coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braginskii, S.I.: 1965,Rev. Plasma Phys. 1, 205.Google Scholar
  2. Braun, D.C. and Duvall, T.L.: 1990,Solar Phys. 129, 83.Google Scholar
  3. Braun, D.C., Duvavall, T.L. and LaBonte, B.J.: 1987,Astrophys. J. 319, L27.Google Scholar
  4. Braun al.: 1992,Astrophys. J. 391, L113.Google Scholar
  5. Braun, D.C., LaBonte, B.J. and Duvall, T.L.: 1990,Astrophys. J. 354, 372.Google Scholar
  6. Goedbloed, H.: 1984,Physica D 12, 107.Google Scholar
  7. Goossens, M.: 1991, in: E.R. Priest and A.W. Hood (eds.),Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge, p. 137.Google Scholar
  8. Goossens, M. and Poedts, S.: 1992,Astrophys. J. 384, 348.Google Scholar
  9. Grossmann, W. and Smith, R.A.: 1988,Astrophys. J. 332, 476.Google Scholar
  10. Gruber, R. and Rappaz, J.: 1985,Finite Element Methods in Linear Ideal MHD, Springer-Verlag, Berlin.Google Scholar
  11. Hasegawa, A. and Chen, L.: 1976,Phys. Fluids 19, 1924.Google Scholar
  12. Hollweg, J.V.: 1985,J. Geophys. Res. 90, 7620.Google Scholar
  13. Hollweg, J.V.: 1986,Astrophys. J. 306, 730.Google Scholar
  14. Hollweg, J.V.: 1987,Astrophys. J. 320, 875.Google Scholar
  15. Hollweg, J.V.: 1988,Astrophys. J. 335, 1005.Google Scholar
  16. Hollweg, J.V.: 1990,Comp. Phys. Rep. 12, 205.Google Scholar
  17. Hollweg, J.V., Yang G.: 1988,J. Geophys. Res. 93, 5423.Google Scholar
  18. Ionson, J.A.: 1978,Astrophys. J. 226, 650.Google Scholar
  19. Ionson, J.A.: 1985,Solar Phys. 100, 289.Google Scholar
  20. Kappraff, J.M. and Tataronis, J.A.: 1977,J. Plasma Phys. 18, 209.Google Scholar
  21. Kerner al.: 1985,Comp. Phys. Comm. 36, 225.Google Scholar
  22. Lou, Y.Q. 1990, Astrophys. J. 350, 452.Google Scholar
  23. Mok, Y. 1987, Astron. Astrophys. 172, 327.Google Scholar
  24. Poedts, S., Goossens, M. and Kerner, W.: 1989,Solar Phys. 123, 83.Google Scholar
  25. Poedts, S.: 1990a,Astrophys. J. 360, 279.Google Scholar
  26. Poedts, S.: 1990b,Geophys. Monograph 58, 257.Google Scholar
  27. Poedts, S.: 1990c,Comput. Phys. Comm. 59, 75.Google Scholar
  28. Poedts, S., Kerner, W. and Goossens, M.: 1989,J. Plasma Phys. 42, 27.Google Scholar
  29. Sakurai, T., Goossens, M. and Hollweg, J.V.: 1991a,Solar Phys. 133, 227.Google Scholar
  30. Sakurai, T.: 1991b,Solar Phys. 133, 247.Google Scholar
  31. Spruit, H.C. and Bogdan, T.J.: 1992,Astrophys. J. 391, L109.Google Scholar
  32. Strang, G. and Fix, G.L.: 1973,An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  33. Strauss, H.R. and Lawson, W.S.: 1989,Astrophys. J. 346, 1035.Google Scholar
  34. Van Eester, D., Goossens, M. and Poedts, S.: 1991,J. Plasma Phys. 45, 3.Google Scholar
  35. Van der Linden, R.A.M.: 1991, Ph.D. Thesis, K.U. Leuven.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. Erdélyi
    • 1
    • 2
  • M. Goossens
    • 3
  1. 1.Center for Plasma AstrophysicsK.U. LeuvenHeverleeBelgium
  2. 2.Department of AstronomyEötvös UniversityBudapestHungary
  3. 3.Center for Plasma AstrophysicsK.U. LeuvenHeverleeBelgium

Personalised recommendations