Journal of comparative physiology

, Volume 123, Issue 1, pp 59–69 | Cite as

Mechanics of trichobothria in orb-weaving spiders (Agelenidae, Araneae)

  • A. Reißland
  • P. Görner


When a fly is humming at a distance of about one centimetre from an orb-weaving spider (Agelenidae) the trichobothria on the spider's extremities are deflected by air streams and air vibrations. Frequency analysis of the hum of the two prey animals,Drosophila andMusca, shows that the effective sound velocities of the harmonics with frequencies inferior to some five hundred Hz exceeds that of higher frequencies by a factor of at least 5. Biologically relevant resonances would, therefore, have to be looked for in the range of a few hundred Hz. Frequency response diagrams show that single hairs have no resonance between a few Hz and approximately 2 kHz. The maximal relative amplitude of hairs of different lengths shifts from the longer to the shorter hairs with increasing frequency. As this is only a minor effect, however, it appears that there is no frequency discrimination by the mechanical apparatus. Constant air streams with a velocity of 40 mm/s cause hair deflection of about 10 degrees (the hair's bend is neglibible). Similarly, near-field particle velocity of sound fields up to a few hundred Hz is well transmitted. The mechanical directional sensitivity does not depend on the azimuthal angle of deflection. Thus, information about direction and velocity of stationary and near-field air movements is transmitted without deformation by the mechanical apparatus. This is well matched with the fact that the hair is multiply innervated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H.: Schallempfang bei Tier und Mensch. Naturwissenschaften30, 69–85 (1942)Google Scholar
  2. Autrum, H.: Anatomy and physiology of sound receptors in invertebrates. In: Acoustic behaviour of animals (ed. R.G. Busnel). Amsterdam, London, New York: Elsevier Publishing Company 1963Google Scholar
  3. Barth, F.G.: Die Physiologie der Spaltsinnesorgane: II. Funktionelle Morphologie eines Mechanoreceptors. J. comp. Physiol.81, 159–186 (1972)Google Scholar
  4. Bischof, H.-J.: Die keulenförmigen Sensillen auf den Cerci der GrilleGryllus bimaculatus als Schwererezeptoren. J. comp. Physiol.98, 277–288 (1975)Google Scholar
  5. Christian, U.: Zur Feinstruktur der Trichobothrien der WinkelspinneTegenaria derhami (Scopoli) (Agelenidae, Araneae). Cytobiol.4, 172–185 (1971)Google Scholar
  6. Christian, U.M.: Trichobothrien, ein Mechanorezeptor bei Spinnen. Elektronenmikroskopische Befunde bei der WinkelspinneTegenaria derhami (Scopoli). Verh. dtsch. Zool. Ges.66, 31–36 (1972)Google Scholar
  7. Dahl, F.: Über die Hörhaare bei den Arachnoiden. Zool. Anz.6, 267–270 (1883)Google Scholar
  8. Dahl, F.: Die Hörhaare (Trichobothrien) und das System der Spinnentiere. Zool. Anz.37, 522–532 (1911)Google Scholar
  9. Dijkgraaf, S.: Über die Reizung des Ferntastsinnes bei Fischen und Amphibien. Experientia3, 206–208 (1947)Google Scholar
  10. Draslar, K.: Functional properties of Trichobothria in the bugPyrrhocoris apterus (L.). J. comp. Physiol.84, 175–184 (1973)Google Scholar
  11. Emerit, M.M.: Innervation trichobothriale et axiale de la patte de l'Aranéide,Gasteracantha versicolor (Walck) (Argiopidae). C.R. Acad. Sci. (Paris)265, 1134–1137 (1967)Google Scholar
  12. Esch, H., Wilson, D.: The sounds produced by flies and bees. Z. vergl. Physiol.54, 256–267 (1967)Google Scholar
  13. Foelix, R.F., Chu-Wang, I-Wu: The morphology of spider sensilla, I. Mechanoreceptors. Tissue and Cell5, 451–460 (1973)Google Scholar
  14. Gnatzy, W., Schmidt, K.: Die Feinstruktur der Sinneshaare auf den Cerci vonGryllus bimaculatus Deg. (Saltatoria, Gryllidae). I. Faden- und Keulenhaare. Z. Zellforsch.122, 190–209 (1971)Google Scholar
  15. Görner, P.: A proposed transducing mechanism for a multiplyinnervated mechanoreceptor (Trichobothrium) in spiders. Cold Spr. Harb. Symp. Quant. Biol.30, 69–73 (1965)Google Scholar
  16. Görner, P., Andrews, P.: Trichobothrien, ein Ferntastsinnesorgan bei Webespinnen (Araneen). Z. vergl. Physiol.64, 301–317 (1969)Google Scholar
  17. Hansen, H.J.: On the Trichobothria (“auditory hairs”) in Arachnida, Myriopoda, and Insecta, with a summary of the external sensory organs in Arachnida. Entomol. Tidskr.38, 240–259 (1917)Google Scholar
  18. Haskell, P.T.: Hearing in certain Orthoptera. I, II. J. exp. Biol.33, 756–766; 767–776 (1956)Google Scholar
  19. Haupt, J.: Beitrag zur Kenntnis der Sinnesorgane von Symphylen: I. Elektronenmikroskopische Untersuchung des Trichobothriums vonScutigerella Immaculata Newport. Z. Zellforsch.110, 588–599 (1970)Google Scholar
  20. Haupt, J.: Ultrastruktur der Trichobothrien vonAllopauropus (Pauropoda). Proc. 3. Int. Congr. Myriapodol., Hamburg (1975), Ent. Germ. (in print)Google Scholar
  21. Haupt, J., Coineau, Y.: Trichobothrien und Tastborsten der MilbeMicrocaeculus (Acari, Prostigmata, Caeculidae). Z. Morph. Tiere81, 305–322 (1975)Google Scholar
  22. Hoffmann, C.: Bau und Funktion der Trichobothrien vonEuscorpius carpathicus L. Z. vergl. Physiol.54, 290–352 (1967)Google Scholar
  23. Linsenmair, K.E.: Anemotaktische Orientierung bei Skorpionen (Chelicerata, Scorpiones). Z. vergl. Physiol.60, 445–449 (1968)Google Scholar
  24. Markl, H.: Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschr. Zool.21, 100–120 (1973)Google Scholar
  25. Nicklaus, R.: Die Erregung einzelner Fadenhaare vonPeriplaneta americana in Abhängigkeit von der Größe und Richtung der Auslenkung. Z. vergl. Physiol.50, 331–362 (1965)Google Scholar
  26. Reißland, A.: Electrophysiology of Trichobothria in orb-weaving spiders (Agelenidae,Araneae). J. comp. Physiol.123, 71–84 (1978)Google Scholar
  27. Smola, U.: Untersuchungen zur Topographie, Mechanik und Strömungsmechanik der Sinneshaare auf dem Kopf der WanderheuschreckeLocusta migratoria. Z. vergl. Physiol.67, 382–402 (1970)Google Scholar
  28. Sotavalta, O.: The flight-sounds of insects. In: Acoustic behaviour of animals (ed. R.-G. Busnel), pp. 374–390. Amsterdam, London, New York: Elsevier Publishing Company 1963Google Scholar
  29. Wiese, K.: Mechanoreceptors for near-field water displacements in crayfish. J. Neurophysiol.39, 816–833 (1976)Google Scholar
  30. Williams, C.M., Galambos, R.: Oscilloscopic and stroboscopic analysis of the flight sounds ofDrosophila. Biol. Bull. (Woods Hole)99, 300–307 (1950)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Reißland
    • 1
  • P. Görner
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Federal Republic of Germany

Personalised recommendations