Journal of Low Temperature Physics

, Volume 25, Issue 5–6, pp 771–792 | Cite as

Stress dependence of the Fermi surface of antiferromagnetic chromium

  • E. Fawcett
  • R. Griessen
  • D. J. Stanley
Article

Abstract

The uniaxial stress dependence of extremal cross sections of the Fermi surface of antiferromagnetic chromium has been determined by simultaneously measuring the oscillatory magnetostriction and the de Haas-van Alphen torque. The stress dependence data permit identification of a set of pseudoharmonic frequency branches as resulting from magnetic breakdown between the intersecting hole ellipsoids, which are obtained by remapping the Fermi surface of paramagnetic chromium to include the magnetic band gaps produced by the spin density wave of wave vectorQ incommensurate with the lattice. The stress dependence ofQ is very small, an unexpected result in view of the strong stress dependence of the Néel temperature. The stress dependence of the Fermi surface of paramagnetic chromium thus dominates the behavior, and is found to resemble closely that of the other group VI metals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arrott,Magnetism, Vol. IIB, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1966), p. 295.Google Scholar
  2. 2.
    W. M. Lomer,Proc. Phys. Soc. (London)80, 489 (1962).Google Scholar
  3. 3.
    A. W. Overhauser,Phys. Rev. 128, 1437 (1962).Google Scholar
  4. 4.
    W. M. Lomer, inProc. Int. Conf. Magnetism, Nottingham, 1964 (The Institute of Physics and the Physical Society, London, 1965), p. 127.Google Scholar
  5. 5.
    J. E. Graebner and J. A. Marcus,Phys. Rev. 175, 659 (1968).Google Scholar
  6. 6.
    B. R. Watts,Phys. Lett. 10, 275 (1964).Google Scholar
  7. 7.
    J. E. Graebner, inProc. 12th Int. Conf. Low Temp. Phys., Kyoto, Japan, E. Kanda, ed. (Academic Press of Japan, Kyoto, Japan, 1971), p. 6010.Google Scholar
  8. 8.
    S. Asano and J. Yamashita,J. Phys. Soc. Japan 23, 714 (1967).Google Scholar
  9. 9.
    A. J. Arko, J. A. Marcus, and W. A. Reed,Phys. Rev. 176, 671 (1968);185, 901 (1969).Google Scholar
  10. 10.
    L. M. Falicov and P. R. Sievert,Phys. Rev. 138A, 88 (1965).Google Scholar
  11. 11.
    W. D. Wallace and H. V. Bohm,J. Phys. Chem. Solids 29, 721 (1968).Google Scholar
  12. 12.
    D. F. Snider and R. L. Thomas,Phys. Rev. B 3, 1091 (1971).Google Scholar
  13. 13.
    R. Griessen, D. J. Stanley, and E. Fawcett,Solid State Comm., to be published.Google Scholar
  14. 14.
    R. Griessen, M. J. G. Lee, and D. Stanley,Phys. Rev., to be published.Google Scholar
  15. 15.
    D. J. Stanley, J. M. Perz, M. J. G. Lee, and R. Griessen, to be published.Google Scholar
  16. 16.
    E. Fawcett,Phys. Lett. 32A, 117 (1970).Google Scholar
  17. 17.
    H. Umbeyashi, G. Shirane, B. C. Frazer, and W. B. Daniels,J. Phys. Soc. Japan 24, 368 (1968).Google Scholar
  18. 18.
    J. Rath and J. Callaway,Phys. Rev. B 8, 5398 (1973).Google Scholar
  19. 19.
    P. A. Fedders and P. C. Martin,Phys. Rev. 143, 245 (1966).Google Scholar
  20. 20.
    T. M. Rice,Phys. Rev. B 2, 3619 (1970).Google Scholar
  21. 21.
    A. Kotani,J. Phys. Soc. Japan 38, 974 (1975).Google Scholar
  22. 22.
    J. C. Kimball and L. M. Falicov,Phys. Rev. Lett. 20, 1169 (1968).Google Scholar
  23. 23.
    J. C. Kimball,Phys. Rev. 183, 533 (1969).Google Scholar
  24. 24.
    S. A. Werner, A. Arrott, and H. Kendrick,Phys. Rev. 155, 528 (1967).Google Scholar
  25. 25.
    R. Griessen and R. S. Sorbello,J. Low Temp. Phys. 16, 237 (1974).Google Scholar
  26. 26.
    M. Posternak, W. B. Waeber, R. Griessen, W. Joss, W. van der Mark, and W. Wejgaard,J. Low Temp. Phys. 21, 47 (1975).Google Scholar
  27. 27.
    G. Brandli and R. Griessen,Cryogenics 13, 299 (1973).Google Scholar
  28. 28.
    M. O. Steinitz, J. P. Kalejs, J. M. Perz, and E. Fawcett,J. Phys. F: Metal Phys. 3, 617 (1973).Google Scholar
  29. 29.
    R. G. Chambers,Proc. Phys. Soc. (London)88, 701 (1966).Google Scholar
  30. 30.
    R. Griessen and A. Kundig,Solid State Comm. 11, 295 (1972).Google Scholar
  31. 31.
    E. J. Gutman and J. L. Stanford,Phys. Rev. 4, 4020 (1971).Google Scholar
  32. 32.
    D. I. Bolef and J. de Klerk,Phys. Rev. 129, 1063 (1963).Google Scholar
  33. 33.
    J. B. Ketterson, D. D. Koelling, J. C. Shaw, and L. R. Windmiller,Phys. Rev. B 11, 1447 (1975).Google Scholar
  34. 34.
    R. F. Girvan, A. V. Gold, and R. A. Phillips,J. Phys. Chem. Solids 29, 1485.Google Scholar
  35. 35.
    F. H. Featherston and J. R. Neighbours,Phys. Rev. 130, 1324 (1963).Google Scholar
  36. 36.
    T. Mitsui and C. T. Tomizuka,Phys. Rev. 137A, 564 (1965).Google Scholar
  37. 37.
    D. B. McWhan and T. M. Rice,Phys. Rev. Lett. 19, 846 (1967).Google Scholar
  38. 38.
    G. C. Fletcher and C. F. Osborne,J. Phys. F 3, L22 (1973).Google Scholar
  39. 39.
    T. M. Rice and D. B. McWhan,IBM J. Res. Dev. 251 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • E. Fawcett
    • 1
  • R. Griessen
    • 1
  • D. J. Stanley
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Natuurkundig Laboratoriumder Vrije UniversiteitAmsterdamThe Netherlands
  3. 3.Materials Physics DivisionAERE HarwellDidcotEngland

Personalised recommendations