Journal of comparative physiology

, Volume 135, Issue 3, pp 259–268 | Cite as

Insect disturbance stridulation: Characterization of airborne and vibrational components of the sound

  • W. Mitchell Masters


Some insects stridulate when attacked by a predator. This behavior has been interpreted as a defensive response, the sound being a warning to predators of the insect's noxiousness. Since to humans many such disturbance sounds are audibly similar, it is possible that they may in fact be mutually mimetic. This idea was investigated through analysis of the temporal and spectral characteristics of the disturbance sounds of a variety of insects that stridulate by a file- and -scraper device. Properties of both the airborne sound and the underlying cuticular vibration (detected by a special vibration measuring instrument) were examined, and four characteristic features found:

  1. 1.

    The temporal pattern is simple. Bursts of toothstrike impulses are about 80 ms long, and are separated by pauses about 90 ms long. Bursts occur at a rate of about 5 to 10/s.

  2. 2.

    The temporal pattern is irregular. For toothstrike interval, burst duration, pause duration and interburst interval, the standard deviation is usually >30% of the mean. Much of the irregularity is presumably caused by the insect struggling at the same time it stridulates. Some insects show less variability, and these appear to lack tight coupling between stridulatory movements and struggling movements, so struggling does not interfere with stridulation.

  3. 3.

    The airborne sound pressure waveform is impulsive. The frequency coverage of the sounds is quite broad with an average 10-dB bandwidth of about 40 kHz centered at 25 kHz. The sounds are not intense, ranging from about 10 to 60 dB (re 20×10−6 Pa) at 10 cm.

  4. 4.

    The cuticular vibration waveform is sharply peaked and contains maximum energy at a frequency determined by the tooth-strike rate, usually about 1 kHz. The average decrease in power above this frequency is about 12 dB/octave. The maximum peak-to-peak amplitude of cuticular motion is about 1 to 10 μm.


These common characteristics may lead predators to treat insects producing disturbance sounds similarly, although this possibility should be tested empirically. If acoustic mimicry exists, the communicatory interchange between predator and prey may be subtler than is commonly appreciated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.D.: Sound communication in Orthoptera and Cicadidae. In: Animal sounds and communication. Lanyon, W.E., Tavolga, W.N. (eds.), pp. 38–92, Washington: Am. Inst. Biol. Sci. 1960Google Scholar
  2. Alexander, R.D.: Evolutionary change in cricket acoustic communication. Evolution16, 443–467 (1962)Google Scholar
  3. Alexander, R.D.: Acoustical communication in arthropods. Annu. Rev. Entomol.12, 494–526 (1967)Google Scholar
  4. Autrum, H.: Anatomy and physiology of sound receptors in invertebrates. In: Acoustic behavior of animals. Busnel, R.-G. (ed.), pp. 412–433. Amsterdam, London, New York: Elsevier 1963Google Scholar
  5. Barth, F.G.: Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von Parametern des Luftschallreizes. Z. Vergl. Physiol.55, 407–449 (1967)Google Scholar
  6. Bauer, T.: Experimente zur Frage der biologischen Bedeutung des Stridulationsverhaltens von Käfern. Z. Tierpsychol.42, 57–65 (1976)Google Scholar
  7. Bentley, D.R., Hoy, R.R.: Genetic control of the neuronal network generating cricket (Teleogryllus Gryllus) song patterns. Anim. Behav.20, 478–492 (1972)Google Scholar
  8. Burgess, P.R., Perl, E.R.: Cutaneous mechanoreceptors and nociceptors. In: Handbook of sensory physiology, Vol. II. Iggo, A. (ed.), pp. 29–78. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  9. Busnel, R.-G., Dumortier, B.: Vérification par des méthodes d'analyse acoustique des hypothèses sur l'origine du cri du sphinxAcherontia atropos L. Bull. Soc. Entomol. France64, 44–58 (1959)Google Scholar
  10. Cott, H.B.: Adaptive coloration in animals. London: Methuen 1940Google Scholar
  11. Dooling, R.J.: Temporal summation of pure tones in birds. J. Acoust. Soc. Am.65, 1058–1060 (1979)Google Scholar
  12. Dumortier, B.: Morphology of sound emission apparatus in Arthropoda. In: Acoustic behavior of animals. Busnel, R.-G. (ed.), pp. 277–345. Amsterdam, London, New York: Elsevier 1963aGoogle Scholar
  13. Dumortier, B.: The physical characteristics of sound emissions in Arthropoda. In: Acoustic behavior of animals. Busnel, R.-G. (ed.), pp. 346–373. Amsterdam, London, New York: Elsevier 1963bGoogle Scholar
  14. Dumortier, B.: L'Émission sonore dans le genreGromphadorhina Brunner (Blattoidea: Perisphaeriidae), étude morphologique et biologique. Bull. Soc. Zool. France90, 89–101 (1965)Google Scholar
  15. Edmunds, M.: Defence in animals: A survey of anti-predator devices. Harlow, Essex: Longman 1974Google Scholar
  16. Ehret, G.: Temporal auditory summation for pure tones and white noise in the house mouse (Mus musculus). J. Acoust. Soc. Am.59, 1421–1427 (1976)Google Scholar
  17. Ehret, G.: Comparative psychoacoustics: Perspectives of peripheral sound analysis in mammals. Naturwissenschaften64, 461–470 (1977)Google Scholar
  18. Eisner, T., Aneshansley, D., Eisner, M., Rutowski, R., Chong, B., Meinwald, J.: Chemical defence and sound production in Australian tenebrionid beetles (Adelium spp.) Psyche81, 189–208 (1974)Google Scholar
  19. Frings, E., Frings, M.: Reactions of orb-weaving spiders (Argiopidae) to airborne sounds. Ecology47, 578–588 (1966)Google Scholar
  20. Fullard, J.H., Fenton, M.B., Simmons, J.A.: Jamming bat echolocation: The clicks of arctiid moths. Can. J. Zool.57, 647–649 (1979)Google Scholar
  21. Guenther, W.C.: Concepts of statistical inference, 2nd ed. New York: McGraw Hill 1973Google Scholar
  22. Haskell, P.T.: Insect sounds. Chicago: Quadrangle Books 1961Google Scholar
  23. Haskell, P.T.: Sound production. In: The physiology of Insecta, Vol. II. Rockstein, M. (ed.), pp. 353–410. New York, London: Academic Press 1974Google Scholar
  24. Kinsler, L.E., Frey, A.R.: Fundamentals of acoustics. New York, London, Sydney: Wiley 1962Google Scholar
  25. Markl, H.: Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. II. Erzeugung und Eigenschaften der Signale. Z. Vergl. Physiol.60, 103–150 (1968)Google Scholar
  26. Markl, H., Hölldobler, B.: Recruitment and food retrieving behavior inNovomessor (Formicidae, Hymenoptera). II. Vibration Signals. Behav. Ecol. Sociobiol.4, 183–216 (1978)Google Scholar
  27. Markl, H., Hölldobler, B., Hölldobler, T.: Mating behavior and sound production in harvester ants (Pogonomyrmex, Formicidae). Insectes Soc.24, 191–212 (1977)Google Scholar
  28. McCue, J.J.G., Bertolini, A.: A portable receiver for ultrasonic waves in air. IEEE Trans. Sonics & Ultrason. SU-11, 41–49 (1964)Google Scholar
  29. Marshall, G.A.K.: Insect stridulation as a warning or intimidating character. Trans. R. Entom. Soc. London1902, 404 (1902)Google Scholar
  30. Masterton, B., Heffner, H., Ravizza, R.: The evolution of human hearing. J. Acoust. Soc. Am.45, 966–985 (1969)Google Scholar
  31. Masters, W.M.: Insect disturbance stridulation: Its defensive role. Behav. Ecol. Sociobiol.5, 187–200 (1979a)Google Scholar
  32. Masters, W.M.: Irradiance modulation used to examine sound-radiating cuticular motion in insects. Science203, 57–60 (1979b)Google Scholar
  33. Masters, W.M.: Insect disturbance stridulation: Characteristics and defensive role. Ph. D. Thesis, Cornell University, Ithaca, New York (1979c)Google Scholar
  34. Michelsen, A., Nocke, H.: Biophysical aspects of sound communication in insects. In: Advances in insect physiology. Treherne, J.E., Berridge, M.J., Wigglesworth, V.B. (eds.), pp. 247–296. London, New York: Academic Press 1974Google Scholar
  35. Nelson, M.C.: Sound production in the cockroach,Gromphadorhina portentosa: The sound producing apparatus. J. Comp. Physiol.132, 27–38 (1979)Google Scholar
  36. Pocock, R.I.: How and why scorpions hiss. Nat. Sci. London9, 17–25 (1896)Google Scholar
  37. Roth, L.M., Hartman, H.B.: Sound production and its evolutionary significance in the Blattaria. Ann. Entomol. Soc. Am.60, 740–752 (1967)Google Scholar
  38. Sandow, J.D., Bailey, W.J.: An experimental study of stridulation inMygalopsis ferruginea Redtenbacher (Orthoptera: Tettigoniidea). Anim. Behav.26, 1004–1011 (1978)Google Scholar
  39. Schwartzkopff, J.: Mechanoreception. In: The physiology of Insecta, Vol. II. Rockstein, M. (ed.), pp. 273–352. New York, London: Academic Press 1974Google Scholar
  40. Skovmand, P., Pedersen, S.B.: Tooth impact rate in the song of a shorthorned grasshopper: A parameter carrying specific behavioral information. J. Comp. Physiol.124, 27–36 (1978)Google Scholar
  41. Smith, R.L., Langley, W.M.: Cicada stress sound: An assay of its effectiveness as a predator defense mechanism. S. West Nat.23, 187–196 (1978)Google Scholar
  42. Snedecor, G.W., Cochran, W.G.: Statistical methods, 6th ed. Ames, Iowa: Iowa State Univ. Press 1967Google Scholar
  43. Spangler, H.G., Manley, D.G.: Sounds associated with the mating behavior of a mutillid wasp. Ann. Entomol. Soc. Am.71, 389–392 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • W. Mitchell Masters
    • 1
  1. 1.Section of Neurobiology and BehaviorCornell UniversityIthacaUSA
  2. 2.Fakultät für BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations