Journal of comparative physiology

, Volume 138, Issue 3, pp 213–223

Ampullary electroreceptors in the sturgeonScaphirhynchus platorynchus (rafinesque)

  • J. H. Teeter
  • R. B. Szamier
  • M. V. L. Bennett
Article

Summary

  1. 1.

    Ampullary receptors in the skin of the shovelnose sturgeon,Scaphirhynchus platorynchus, were examined morphologically and physiologically. As in the chondrostean paddlefish,Polyodon (Jørgensen etal., 1972), and in the ampullae of Lorenzini of elasmobranchs (Waltman, 1966; Szabo, 1972; Szamier and Bennett, 1980) each receptor cell has a cilium on its apical (lumenal) surface (Figs. 2, 3). Several synaptic projections from the basal part of the receptor cell fit into invaginations of the innervating nerve terminals (Fig. 3). A dense ribbon extends into each projection and the ribbons are covered with vesicles above the projections. Each ampulla is innervated by a single nerve fiber.

     
  2. 2.

    The primary afferent fibers innervating these receptors are spontaneously active (20–60 impulses/s) and this activity is modulated by electrical stimuli of less than 1 mV applied at the receptor opening. Cathodal stimuli, which make the outside of the skin negative with respect to the inside, accelerate the resting nerve discharge (Fig. 4). As a cathodal stimulus is increased beyond the level at which the maximum nerve discharge is evoked, the nerve response decreases in frequency until it is completely blocked (Figs. 5, 7). Anodal stimuli of increasing strength decelerate and eventually block the resting nerve discharge (Fig. 4). Increasing the strength of an anodal stimulus beyond the level at which the resting discharge is blocked results in a progressive return of nerve impulses (Figs. 5, 7).

     
  3. 3.

    Application of 10 mM CoCl2 or MgCl2 to the receptor openings usually produces a rapid and reversible block of both the resting and evoked nerve discharge (Fig. 8). Recovery from this suppression is facilitated by application of 10 mM CaCl2.

     
  4. 4.

    These results are similar to those obtained with elasmobranch ampullae of Lorenzini and suggest that a similar mode of operation is present (Clusin and Bennett, 1979a). We conclude that the ampullary organs of chondrostean fishes are electroreceptors. Their morphological and functional similarities to the ampullary receptors in elasmobranchs suggest that they should be classified as ampullae of Lorenzini.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, R., Denizot, J.P.: Sur la présence et la répartition des organes ampullaires chezPlotosus anguillaris. Arch. Anat. Microsc. Morphol. Exp.61, 85–89 (1972)Google Scholar
  2. Bennett, M.V.L.: Electroreceptors in mormyrids. Cold Spring Harbor Symp. Quant. Biol.30, 245–262 (1965)Google Scholar
  3. Bennett, M.V.L.: Mechanisms of electroreception. In: Lateral line detectors. Cahn, P.H. (ed.), pp. 313–393. Bloomington: Indiana University Press 1967Google Scholar
  4. Bennett, M.V.L.: Electroreception. In: Fish physiology, Vol. 5, Sensory systems and electric organs. Hoar, W.S., Randall, D.J. (eds.), pp. 493–574. New York: Academic Press 1971aGoogle Scholar
  5. Bennett, M.V.L.: Electrolocation in fishes. Ann. N.Y. Acad. Sci.188, 242–269 (1971b)Google Scholar
  6. Clusin, W.T., Bennett, M.V.L.: Calcium-activated conductance in skate electroreceptors. Current clamp experiments. J. Gen. Physiol.69, 121–143 (1977a)Google Scholar
  7. Clusin, W.T., Bennett, M.V.L.: Calcium-activated conductance in skate electroreceptors. Voltage clamp experiments. J. Gen. Physiol.69, 145–182 (1977b)Google Scholar
  8. Clusin, W.T., Bennett, M.V.L.: The oscillatory responses of skate electroreceptors to small voltage stimuli. J. Gen. Physiol.73, 685–702 (1979a)Google Scholar
  9. Clusin, W.T., Bennett, M.V.L.: The ionic basis of oscillatory responses of skate electroreceptors. J. Gen. Physiol.73, 703–723 (1979b)Google Scholar
  10. Dijkgraaf, S.: Electroreception in the catfishAmiurus nebulosus. Experientia24, 187–188 (1968)Google Scholar
  11. Dijkgraaf, S., Kalmijn, A.J.: Versuche zur biologischen Bedeutung der Lorenzinischen Ampullen bei den Elasmobranchiern. Z. Vergl. Physiol.53, 187–194 (1966)Google Scholar
  12. Fahrenholz, C.: Über die „Drüsen“ und die Sinnesorgane in der Haut des Lungenfisches. Z. Mikrosk. Anat. Forsch.16, 55–74 (1929)Google Scholar
  13. Fessard, A. (ed.): Handbook of sensory physiology, Vol. III/3, Electroreceptors and other specialized receptors in lower vertebrates. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  14. Jørgensen, J.M., Flock, A., Wersäll, J.: The Lorenzinian ampullae ofPolyodon spathula. Z. Zellforsch.130, 362–377 (1972)Google Scholar
  15. Kalmijn, A.J.: The electric sense of sharks and rays. J. Exp. Biol.55, 371–383 (1971)Google Scholar
  16. Kalmijn, A.J.: The detection of electric fields from inanimate and animate sources other than electric organs. In: Handbook of sensory physiology, Vol. III/3, Electroreceptors and other specialized receptors in lower vertebrates. Fessard, A. (ed.), pp. 147–200. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  17. Mullinger, A.M.: The fine structure of ampullary electric receptors inAmiurus. Proc. R. Soc. (London) Biol.160, 345–359 (1964)Google Scholar
  18. Murray, R.W.: Receptor mechanisms in the ampullae of Lorenzini of elasmobranchs. Cold Spring Harbor Symp. Quant. Biol.30, 233–243 (1965)Google Scholar
  19. Murray, R.W.: The function of the ampullae of Lorenzini of elasmobranches. In: Lateral line detectors. Cahn, P.H. (ed.), pp. 277–294. Bloomington, Ind.: Indiana Univ. Press 1967Google Scholar
  20. Murray, R.W.: The ampullae of Lorenzini. In: Handbook of sensory physiology, Vol. III/3, Electroreceptors and other specialized receptors in lower vertebrates. Fessard, A. (ed.), pp. 125–146. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  21. Norris, H.W.: Observations upon the peripheral distribution of the cranial nerves of certain ganoid fishes (Amia, Lepidosteus, Polyodon, Scaphirhynchus and Acipenser). J. Comp. Neurol.39, 345–416 (1925)Google Scholar
  22. Obara, S.: Mechanism of electroreception in ampullae of Lorenzini of the marine catfish,Plotosus. In: Electrobiology of nerve, synapse and muscle. Reuben, J.P., Purpura, D.P., Bennett, M.L.V., Kandel, E.R. (eds.), pp. 129–147. New York: Raven Press 1976Google Scholar
  23. Obara, S., Bennett, M.V.L.: Mode of operation of ampullae of Lorenzini of the skate,Raja. J. Gen. Physiol.60, 534–557 (1972)Google Scholar
  24. Obara, S., Oomura, Y.: Disfacilitation as the basis for the sensory suppression in a specialized lateralis receptor of the marine catfish. Proc. Jpn. Acad.49, 213–217 (1973)Google Scholar
  25. Peters, R.C., Bretschneider, F.: Electric phenomena in the habitat of the catfishIctalurus nebulosus Les J. Comp. Physiol.81, 345–362 (1972)Google Scholar
  26. Pfeiffer, W.: Die Fahrenholzschen Organe der Dipnoi und Brachiopterygii. Z. Zellforsch.90, 127–147 (1968)Google Scholar
  27. Roth, A.: Propriétés fonctionelles et morphologiques des différents organes de la ligne laterale des Mormyrides. J. Physiol. (Paris)59, 486 (1967)Google Scholar
  28. Roth, A.: Electroreceptors in the catfishAmiurus nebulosus. Z. Vergl. Physiol.61, 196–202 (1968)Google Scholar
  29. Roth, A.: Wozu dienen die Electrorezeptoren der Welse? J. Comp. Physiol.79, 113–135 (1972)Google Scholar
  30. Roth, A.: Electroreceptors in Brachioterygii and Dipnoi. Naturwissenschaften60, 106 (1973)Google Scholar
  31. Szabo, T.: Sense organs of the lateral line system in some electric fish of the Gymnotidae, Mormyridae and Gymnarchidae. J. Morphol.117, 229–250 (1965)Google Scholar
  32. Szabo, T.: Ultrastructural evidence for a mechanoreceptor function of the ampullae of Lorenzini. J. Microsc.14, 343–350 (1972)Google Scholar
  33. Szabo, T.: Anatomy of the specialized lateral line organs of electroreception. In: Handbook of sensory physiology, Vol. III/3, Electroreceptors and other specialized receptors in lower vertebrates. Fessard, A. (ed.), pp. 13–58. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  34. Szamier, R.B., Bennett, M.V.L.: Special cutaneous receptor organs of fish. VII. Ampullary organs of mormyrids. J. Morphol.143, 365–384 (1974)Google Scholar
  35. Szamier, R.B., Bennett, M.V.L.: Ampullary electroreceptors in the fresh water ray,Potamotrygon. J. Comp. Physiol.138, 225–230 (1980)Google Scholar
  36. Szamier, R.B., Wachtel, A.W.: Special cutaneous receptor organs of fish. III. The ampullary organs ofEigenmannia. J. Morphol.128, 264–290 (1969)Google Scholar
  37. Teeter, J.H., Bennett, M.V.L.: Ampullary electroreceptors in sturgeon. Neurosci. Abstr.2, 185 (1976)Google Scholar
  38. Teeter, J.H., Bennett, M.V.L., Szamier, R.B.: Ampullary electroreceptors in sturgeon. Proc. Int. Union Physiol. Sci.13, 747 (1977)Google Scholar
  39. Thompson, K.S.: On the individual history of cosmine and a possible electroreceptive function of the pore-canal system in fossil fishes. In: Problems in vertebrate evolution. Andrews, S.M., Miles, R.S., Walker, A.D. (eds.), pp. 247–270. New York: Academic Press 1977Google Scholar
  40. Wachtel, A.W., Szamier, R.B.: Special cutaneous receptor organs of fish. IV. Ampullary organs of the nonelectric catfish,Kryptopterus. J. Morphol.128, 291–308 (1969)Google Scholar
  41. Waltman, B.: Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta Physiol. Scand.66, Suppl. 284, 1–60 (1966)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. H. Teeter
    • 1
  • R. B. Szamier
    • 2
  • M. V. L. Bennett
    • 3
  1. 1.Monell Chemical Senses CenterUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of OphthalmologyHarvard Medical School, Massachusetts Eye and Ear InfirmaryBostonUSA
  3. 3.Division of Cellular Neurobiology, Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA

Personalised recommendations