Journal of comparative physiology

, Volume 125, Issue 4, pp 291–299 | Cite as

Echolocation by free-tailed bats (Tadarida)

  • James A. Simmons
  • W. A. Lavender
  • B. A. Lavender
  • J. E. Childs
  • K. Hulebak
  • M. R. Rigden
  • J. Sherman
  • B. Woolman
  • Michael J. O'Farrell


The echolocation of bats in the genusTadarida is highly adaptive to different acoustic conditions. These bats use different types of sonar signals with a diversity usually observed in comparisons across families of bats.Tadarida brasiliensis andT. macrotis search for airborne prey in open, uncluttered spaces using narrow-band, short CF signals with no FM components. They add broadband FM components while dropping the CF components when approaching or capturing prey. Only one harmonic is present in these insect-pursuit signals. When flying in cluttered situations or echolocating in a laboratory room,T. brasiliensis uses multiple-harmonic FM signals. Stationary bats tend to use linear frequency sweeps and moving bats tend to use curvilinear frequency sweeps or linear period sweeps. When emerging from a roost they initially use a short-CF/FM signal, changing to an FM signal as they fly away. The acuity of perception of target range inT. brasiliensis is about 1.0 to 1.5 cm and is determined by the bandwidth of the target-ranging sonar signals as represented by their autocorrelation functions. Many less adaptable species of bats use signals corresponding to part of the sonar repertoire ofTadarida. The functions of short CF or narrowband signals for detection and FM or broadband signals for resolution and acoustic imaging identified from comparisons among such species are confirmed by observations of echolocation byTadarida. The differences observed in echolocation among many species and families of bats appear to be evolutionary adaptations to some of the same features of the acoustic environment to whichTadarida responds behaviorally.


Frequency Sweep Acoustic Imaging Broadband Signal Narrowband Signal Sonar Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



frequency modulated


constant frequency


linear period modulation


linear-frequency modulation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altes, R.A.: Sonar for generalized target description and its similarity to animal echolocation systems. J. acoust. Soc. Amer.59, 97–105 (1976)Google Scholar
  2. Cockrum, E.L.: Migration in the guano bat,Tadarida brasiliensis. Misc. Publ.51, 303–336 (1969)Google Scholar
  3. Edgerton, H.E., Spangle, P.F., Baker, J.K.: Mexican freetail bats: photography. Science153, 201–203 (1966)Google Scholar
  4. Findley, J.S., Studier, E.H., Wilson, D.E.: Morphologic properties of bat wings. J. Mamm.53, 429–444 (1972)Google Scholar
  5. Goldstern, J.L.: An optimal processor theory for the central formation of the pitch of complex tones. J. acoust. Soc. Amer.54, 1496–1516 (1973)Google Scholar
  6. Goldstein, J.L., Gerson, A., Srulovicz, P., Furst, M.: Verification of the optimal probabilistic basis of aural processing in pitch of complex tones. J. acoust. Soc. Amer. (in press)Google Scholar
  7. Griffin, D.R.: Eistening in the dark. New Haven, Connecticut: Yale University Press 1958Google Scholar
  8. Griffin, D.R.: Echolocation. In: Basic mechanisms in hearing. (ed. A.R. Møller), pp. 849–889. New York: Academic Press 1973Google Scholar
  9. Griffin, D.R., Webster, F.A., Michael, C.R.: The echolocation of flying insects by bats. Anim. Behav.8, 141–154 (1960)Google Scholar
  10. Grinnell, A.D.: Neural processing mechanisms in echolocating bats, correlated with differences in emitted sounds. J. acoust. Soc. Amer.54, 147–156 (1973)Google Scholar
  11. Hayward, B., Davis, R.: Flight speed in western bats. J. Mamm.45, 236–242 (1964)Google Scholar
  12. Henson, O.W., Jr.: The ear and audition. In: Biology of bats, Vol. II (ed., W.A., Wimsatt), pp. 181–263. New York: Academic Press (1970)Google Scholar
  13. Johnson, R.A., Titlebaum, E.E.: Energy spectrum analysis: a model of echolocation processing. J. acoust. Soc. Amer.60, 484–491 (1976)Google Scholar
  14. Koopman, K.F.: Zoogeography of bats. In: About bats (eds. B.H. Slaughter, D.W. Wallon), pp. 29–50. Dallas, Texas: Southern Methodist University Press (1970)Google Scholar
  15. McCue, J.J.G., Bertolini, A.: A portable receiver for ultrasonic waves in air. Transactions I.E.E.E. Sonics and Ultrasonics11, 41–49 (1964)Google Scholar
  16. Neuweiler, G.: Recognition mechanisms in echolocation of bats. In: Recognition of complex acoustic signals. (ed. T.H. Bullock), pp. 111–126. Berlin: Dahlem Konferenzen (1977)Google Scholar
  17. Partridge, G.R.: A high-speed transient analyzer. J. Audio Engng. Soc.15, No. 2 (1967)Google Scholar
  18. Pollak, G.D., Marsh, D.S., Bodenhamer, R., Souther, A.: Echodetecting characteristics of neurons in the inferior colliculus of unanaesthetized bats. Science196, 675–678 (1977)Google Scholar
  19. Popper, A.N., Fay, R.R.: Sound detection and processing by teleost fishes: a critical review. J. acoust. Soc. Amer.53, 1515–1529 (1973)Google Scholar
  20. Romer, A.S.: Vertebrate paleontology, 2nd Edition. Chicago, Illinois: University of Chicago Press 1966Google Scholar
  21. Sales, G.D., Pye, J.D.: Ultrasonic communication by animals. London: Chapman and Hall 1974Google Scholar
  22. Schnitzler, H.-U.: Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen. Fortschr. Zool.21, 136–189 (1973)Google Scholar
  23. Schwartz, M.: Information transmission, modulation, and noise, 2nd Edition. New York: McGraw-Hill (1970)Google Scholar
  24. Simmons, J.A.: The resolution of target range by echolocating bats. J. acoust. Soc. Amer.54, 157–173 (1973)Google Scholar
  25. Simmons, J.A.: Localization and identification of acoustic signals, with reference to echolocation. In: Recognition of complex acoustic signals (ed., T.H., Bullock) pp. 239–277. Berlin: Dahlem Konferenzen 1977Google Scholar
  26. Simmons, J.A., Fenton, M.B., Ferguson, W.R., Jutting, M., Palin, J.: Ultrasonic instrumentation for studying echolocation in bats. Miscellaneous Publications, Royal Ontario Museum, Toronto, Ontario, Canada (in preparation)Google Scholar
  27. Simmons, J.A., Fenton, M.B., O'Farrell, M.J.: Echolocation and pursuit of prey by bats, (in preparation)Google Scholar
  28. Simmons, J.A., Howell, D.J., Suga, N.: Information content of bat sonar echoes. Amer. Sci.63, 204–215 (1975)Google Scholar
  29. Simmons, J.A., Lavender, W.A.: Representation of target range in the sonar receivers of echolocating bats. J. acoust. Soc. Amer.60, Suppl. l, S2 (1976)Google Scholar
  30. Simmons, J.A., Lavender, W.A., Lavender, B.A.: Adaptation to acoustic interference by the echolocating bat,Eptesicus fuscus. Ann. E. Afr. Acad. Sci., in press (1978)Google Scholar
  31. Simmons, J.A., O'Farrell, M.J.: Echolocation by the long-eared bat,Plecotus phyllotis. J. comp. Physiol.122, 201–214 (1977)Google Scholar
  32. Simmons, J.A., Vernon, J.A.: Echolocation: discrimination of targets by the bat,Eptesicus fuscus. J. exp. Zool.176, 315–328 (1971)Google Scholar
  33. Suga, N.: Echo-ranging neurons in the inferior colliculus of bats. Science170, 449–452 (1970)Google Scholar
  34. Suga, N.: Feature extraction in the auditory system of bats. In: Basic mechanisms in hearing (ed. A.R. Møller) pp. 675–742. New York: Academic Press 1973Google Scholar
  35. Vaughan, T.A.: The skeletal system. In: Biology of bats, Vol. I (ed. W.A. Wimsatt), pp. 98–138. New York: Academic Press 1970aGoogle Scholar
  36. Vaughan, T.A.: Flight patterns and aerodynamics. In: Biology of bats, Vol. I (ed. W.A. Wimsatt), pp. 195–216. New York: Academic Press 1970bGoogle Scholar
  37. Vernon, J.A., Peterson, E.A.: Echolocation signals in the free-tailed bat,Tadarida mexicana. J. Aud. Res.5, 317–330 (1965)Google Scholar
  38. Villa, R.B., Cockrum, E.L.: Migration in the guano batTadarida brasiliensis (Saussure). J. Mamm.43, 43–64 (1962)Google Scholar
  39. Webster, F.A., Brazier, O.G.: Experimental studies on target detection, evaluation and interception by echolocating bats. Aerospace Medical Research Laboratory Report No. TR-65-172. U.S.A.F. Systems Command, Aerospace Medical Division 1965Google Scholar
  40. Webster, F.A., Griffin, D.R.: The role of the flight membranes in insect capture by bats. Anim. Behav.10, 332–340 (1962)Google Scholar
  41. Williams, T.C., Ireland, L.C., Williams, J.M.: High altitude flights of the free-tailed bat,Tadarida brasiliensis, observed with radar. J. Mamm.54, 807–821 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • James A. Simmons
    • 1
  • W. A. Lavender
    • 1
  • B. A. Lavender
    • 1
  • J. E. Childs
    • 1
  • K. Hulebak
    • 1
  • M. R. Rigden
    • 1
  • J. Sherman
    • 1
  • B. Woolman
    • 1
  • Michael J. O'Farrell
    • 2
  1. 1.Department of PsychologyWashington UniversitySt. LouisUSA
  2. 2.Zoological Society of NevadaLas VegasUSA

Personalised recommendations