Advertisement

Journal of inclusion phenomena

, Volume 1, Issue 3, pp 211–222 | Cite as

Hydrate inclusion compounds

  • G. A. Jeffrey
Article

Abstract

There are three general classes of hydrate inclusion compounds: the ‘gas’ hydrates, the per-alkyl onium salt hydrates, and the alkylamine hydrates. The first are clathrates, the second are ionic inclusion compounds, the third are ‘semi-clathrates’. Crystallization occurs because the H2O molecules, like SiO2, can form three-dimensional four-connected nets. With water alone, these are the ices. In the inclusion hydrates, nets with larger voids are stabilized by including other ‘guest’ molecules. Anions and hydrogen-bonding functional groups can replace water molecules in these nets, in which case the ‘guest’ species are cations or hydrophobic moieties of organic molecules. The guest must satisfy two criteria. One is dimensional, to ensure a ‘comfortable’ fit within the voids. The other is functional. The guest molecules cannot have either a single strong hydrogen-bonding group, such as an amide or a carboxylate, or a number of moderately strong hydrogen-bonding groups, as in a polyol or a carbohydrate.

The common topological feature of these nets is the pentagonal dodecahedra: i.e., 512-hedron. These are combined with 51262-hedra, 51263-hedra, 51264-hedra and combinations of these polyhedra, to from five known nets. Two of these are the well-known 12 and 17 Å cubic gas hydrate structures,Pm3n, Fd3m; one is tetragonal,P42/mnm, and two are hexagonal,P63/mmc andP6/mmm. The clathrate hydrates provide examples of the two cubic and the tetragonal structures. The alkyl onium salt hydrates have distorted versions of thePm3n cubic, the tetragonal, and one of the hexagonal structures. The alkylamine hydrate structures hitherto determined provide examples of distorted versions of the two hexagonal structures.

There are also three hydrate inclusion structures, represented by single examples, which do not involve the 512-hedra. These are 4(CH3)3CHNH2·39H2O which is a clathrate; HPF6·6H2O and (CH3)4NOH·5H2O which are ionic-water inclusion hydrates. In the monoclinic 6(CH3CH2CH2NH2)·105H2O and the orthorhombic 3(CH2CH2)2NH·26H2O, the water structure is more complex. The idealization of these nets in terms of the close-packing of semi-regular polyhedra becomes difficult and artificial. There is an approach towards the complexity of the water salt structures found in the crystals of proteins.

Key words

hydrate inclusion compounds crystal structures clathrate hydrates gas hydrates alkylamines water molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Wells: ‘The Third Dimension in Chemistry’, Oxford University Press, (1956); ‘Three Dimensional Nets and Polyhedra’, Wiley-Interscience (1977).Google Scholar
  2. 2.
    B. Kamb: ‘Structural Chemistry and Molecular Biology’ (Eds. A. Rich and N. Davidson), W. H. Freeman and Co. (1968); B. Kamp, A. Prakash and C. Krobler:Acta Crystallogr. 22, 706 (1967).Google Scholar
  3. 3.
    W. Schroeder:Sammlung Chem. Chem-Tech. Vortrage 29 1 (1927).Google Scholar
  4. 4.
    H. Davy:Phil. Trans. Roy. Soc. (London),101, 155 (1811); M. FaradayQuart. J. Sci. Lit. Arts 15, 71 (1823).Google Scholar
  5. 5.
    W. M. Deaton and E. M. Frost: ‘Gas Hydrates and their Relation to the Operation of Natural Gas Pipe Lines’, U.S. Department of Interior, Bureau of Mines, Micrograph No. 8 (1949).Google Scholar
  6. 6.
    S.U. Pickering:J. Chem. Soc. London. Trans. 63, 141 (1893).Google Scholar
  7. 7.
    D. L. Fowler, W. V. Loebenstein, D. B. Pall and C. A. Kraus:J. Am. Chem. Soc. 62, 1140 (1940).Google Scholar
  8. 8.
    G. A. Jeffrey and R. K. McMullan:Progr. Inorg. Chem. 8, 43 (1967).Google Scholar
  9. 9.
    H. M. Powell:J. Chem. Soc. (London) 61 (1948).Google Scholar
  10. 10.
    M. von Stackelberg and H. R. Müller:Naturwiss 38, 456 (1951);39, 20 (1952);J. Chem. Phys. 19, 1319 (1951); W. F. Claussen:J. Chem Phys. 19, 259, 662, 1425 (1951); L. Pauling and R. E. Marsh:Proc. Natl. Acad. Sci. U.S.A. 38, 112 (1952).Google Scholar
  11. 11.
    R. K. McMullan and G. A. Jeffrey:J. Chem. Phys. 31, 1231 (1959).Google Scholar
  12. 12.
    C. Löwig:Ann. Chem. Phys. Sci. 42, 113 (1829).Google Scholar
  13. 13.
    K. W. Allen and G. A. Jeffrey:J. Chem. Phys. 38, 2304 (1963); R. K. McMullan: private communication.Google Scholar
  14. 14.
    M. G. Vuilland and N. Satragno:Compt. Rend. Acad. Sci. France 250, 3841 (1960); L. D. Calvert and P. Srivastava:Acta Crystallogr. A25, S131 (1969).Google Scholar
  15. 15.
    W. C. Somerville:J. Phys. Chem. 35, 2412 (1931).Google Scholar
  16. 16.
    R. Favier, J-C. Rosso and L. Carbonnel:Bull. Soc. Chim. de France 5–6, I-225 (1981) J-C. Rosso, R. Favier and L. Carbonnel:Compt. Rend. Acad. Sci. C 409 (1978); L. Carbonnel, J-C. Rosso and C. Caranoni:Compt. Rend. Acad. Sci. C 619 (1973); L. Carbonnel and J-C. Rosso:Solid State Chemistry 8, 304 (1973);Bull. Soc. Chem. France 7–8, 1043 (1976); J-C. Rosso and L. Carbonnel:Compt. Rend. Acad. Sci. C 267, 46 (1968);268, 1012 (1969);269, 1432 (1969);270, 2025 (1970);272, 136 (1971); J-C. Rosso and L. Carbonnel:Compt. Rend. Acad. Sci. Paris 272, 136, 713 (1971);273, 15 (1971); J-C. Rosso and L. Carbonnel:Compt. Rend. Acad. Sci. Paris 273, 1397 (1971).Google Scholar
  17. 17.
    D. N. Glew:Nature 184, 545 (1959);201, 292 (1964);Trans. Farad Soc. 61, 30 (1965).Google Scholar
  18. 18.
    R. K. McMullan, T. H. Jordan and G. A. Jeffrey:J. Chem. Phys. 47, 1218 (1967).Google Scholar
  19. 19.
    G. A. Jeffrey:Acc. Chem. Res. 2, 344 (1969).Google Scholar
  20. 20.
    R. K. McMullan, G. A. Jeffrey and T. H. Jordan:J. Chem. Phys. 47, 1229 (1967).Google Scholar
  21. 21.
    D. Panke:J. Chem. Phys. 48, 2990 (1968).Google Scholar
  22. 22.
    C. S. Brickenkamp and D. Panke:J. Chem. Phys. 58, 5284 (1973).Google Scholar
  23. 23.
    G. A. Jeffrey and R. K. McMullan:J. Chem. Phys. 37, 2231 (1962).Google Scholar
  24. 24.
    M. Bonamico, G. A. Jeffrey and R. K. McMullanJ. Chem. Phys. 37, 2219 (1962).Google Scholar
  25. 25.
    H. Bode and G. Teufer:Acta Crystallogr. 8, 611 (1955).Google Scholar
  26. 26.
    B. Kamp,Science 148, 232 (1965).Google Scholar
  27. 27.
    J. L. Schlenker, F. G. Dwyer, E. E. Jenkins, W. J. Rohrbaugh, G. T. Kokotailo and W. M. Meier:Nature 294, 340 (1981).Google Scholar
  28. 28.
    J. S. Kasper, P. Hagenmuller, M. Ponchard and C. Cros:Science 150, 1713 (1965).Google Scholar
  29. 29.
    H. Merke and H. G. von Scheering:Zeit. Anorg. Alleg. Chem. 395, 223 (1973).Google Scholar
  30. 30.
    H. S. Kim and G. A. Jeffrey:J. Chem. Phys. 53, 3610 (1970).Google Scholar
  31. 31.
    D. Schwarzenbach:J. Chem. Phys. 48, 4134 (1968).Google Scholar
  32. 32.
    G. A. Jeffrey and M. S. Shen,J. Chem. Phys. 57, 56 (1972); G. A. Jeffrey and D. Mastropaolo:Acta Cryst. B34, 552 (1978).Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • G. A. Jeffrey
    • 1
  1. 1.Department of CrystallographyUniversity of PittsburghPittsburghUSA

Personalised recommendations