Colloid and Polymer Science

, Volume 274, Issue 10, pp 995–999

Isotherms of phospholipid monolayers measured by a pendant drop technique

  • J. B. Li
  • R. Miller
  • D. Vollhardt
  • G. Weidemann
  • H. Möhwald
Short Communication

Abstract

The Axisymmetric Drop Shape Analysis (ADSA) has been used to study the surface pressure/area isotherms of insoluble surfactant monolayers. The continuous measurement of surface tension as a function of surface area by increasing and decreasing the drop volume allows to investigate the phase transitions in monolayers. The isotherms of two phospholipids, dipalmitoyl phosphatidyl choline (DPPC) and dimyristoyl phosphatidyl ethanolamine (DMPE), show good agreement with those measured by using a conventional Langmuir-Blodgett film balance, except in the coexistence region. The observed disagreements are discussed in terms of differences in compression rate, curvature of the surface and effect of impurities. Evidence of possible geometric effects on monolayer domain formation and growth is given on the basis of BAM images.

Due to the small total surface area, the ADSA technique provides advantages as regards homogeneity of temperature, surface pressure, surface concentration and the symmetry of area changes.

Key words

ADSA phospholipids LB film balance monolayer isotherms BAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambwani DS, Fort Jr T (1979) Surface and Colloid Science. Plenum Press, New YorkGoogle Scholar
  2. 2.
    Kwok DY, Vollhardt D, Miller R, Li D, Neumann AW (1994) Colloids and Surfaces A 88:51Google Scholar
  3. 3.
    Phillips MC, Chapman D (1968) Biochim Biophys Acta 163:301Google Scholar
  4. 4.
    Rotenberg Y, Boruvka L, Neumann AW (1983) J Colloid Interface Sci 93:169Google Scholar
  5. 5.
    Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann AW (1990) Colloids and Surfaces 43:151Google Scholar
  6. 6.
    Cheng P (1990) Ph.D Thesis, University of TorontoGoogle Scholar
  7. 7.
    Li D, Cheng P, Neumann AW (1992) J Colloid Interface Sci 39:347Google Scholar
  8. 8.
    Cheng P, Neumann AW (1992) Colloids & Surfaces 62:297Google Scholar
  9. 9.
    Miller R, Joos P, Fainerman VB (1994) Adv Colloid Interface Sci 49:249Google Scholar
  10. 10.
    Weidemann G, Vollhardt D (1995) Colloids and Surfaces A 100:187Google Scholar
  11. 11.
    Albrecht O, Gruler H, Sackmann E (1978) J Physique 39:301Google Scholar
  12. 12.
    Möhwald H (1993) Rep Prog Phys 56:653Google Scholar
  13. 13.
    Helm CA, Möhwald H (1988) J Phys Chem 92:1262Google Scholar
  14. 14.
    Miller A, Möhwald H (1987) J Chem Phys 86:4258Google Scholar
  15. 15.
    Kwok DY, Tadros B, Deol H, Cabrerizo-Vilchez MA, Vollhardt D, Miller R, Neumann AW (1995) Langmuir submittedGoogle Scholar
  16. 16.
    Lösche M, Möhwald H (1989) J Coll Interface Sci 131:56Google Scholar
  17. 17.
    Li JB, Miller R, Wüstneck R, Möhwald H, Neumann AW (1995) Colloids and Surfaces A 96:295Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • J. B. Li
    • 1
  • R. Miller
    • 1
  • D. Vollhardt
    • 1
  • G. Weidemann
    • 1
  • H. Möhwald
    • 1
  1. 1.Max-Planck-Institut für Kolloid- und GrenzflächenforschungBerlin-AdlershofFRG

Personalised recommendations