Advertisement

Journal of comparative physiology

, Volume 119, Issue 1, pp 1–14 | Cite as

A visually-evoked roll response in the housefly

Open-loop and closed-loop studies
  • Mandyam V. Srinivasan
Article

Summary

  1. 1.

    A flying, tethered housefly exhibits a turning response about its long axis when presented with a visual stimulus consisting of a rotating radial grating. This roll response is isometrically measured as a torque (Fig. 2).

     
  2. 2.

    Comparison of the dynamic characteristics of the roll response with those of the classical optomotor response reveals that similar neuronal mechanisms mediate visual stabilization of roll and yaw motions.

     
  3. 3.

    The changes of wingbeat amplitude that are elicited by a rotating radial grating are photographically measured and compared to those elicited by a vertically-moving, linear grating (Fig. 4). This data reveals that the flight mechanism generates a roll torque by creating an asymmetry in the lift-forces produced by the two wings.

     
  4. 4.

    The manner in which a fly detects and responds to roll is consistent with a scheme in which the lift produced by a given wing is controlled by the vertical component of motion seen by the ipsilateral eye (Table 1).

     
  5. 5.

    Under closed-loop conditions the flying, tethered fly exhibits a strong tendency to orient visual patterns consisting of a stripe or a linear grating along a direction perpendicular to the equatorial plane of the eyes (Figs. 5, 6).

     

Keywords

Torque Visual Stimulus Vertical Component Equatorial Plane Strong Tendency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, L.G., Keehn, D.G., McCann, G.D.: Motion detection by interneurons of optic lobes and brain of the fliesCalliphora phaenicia andMusca domestica. J. Neurophysiol.31, 509–525 (1968)Google Scholar
  2. Dvorak, D.R., Bishop, L.G., Eckert, H.E.: On the identification of movement detectors in the fly optic lobe. J. comp. Physiol.100, 5–23 (1975)Google Scholar
  3. Eckert, H.: Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik14, 1–23 (1973)Google Scholar
  4. Fermi, G., Reichardt, W.: Optomotorische Reaktionen der FliegeMusca domestica. Kybernetik2, 15–28 (1963)Google Scholar
  5. Goodman, L.J.: The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust,Schistocerca gregaria. J. Exp. Biol.42, 385–407 (1965)Google Scholar
  6. Götz, K.G.: Behavioral analysis of the visual system of the fruitflyDrosophila. In: Proceedings of the Symposium on Information Processing in Sight Sensory Systems ed. P.W. Nye: California Institute of Technology Press (1965)Google Scholar
  7. Götz, K.G.: Flight control inDrosophila by visual perception of motion. Kybernetik4, 199–208 (1968)Google Scholar
  8. Götz, K.G., Wenking, H.: Visual control of locomotion in the walking fruitflyDrosophila. J. comp. Physiol.85, 235–266 (1973)Google Scholar
  9. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des RüsselkäfersChlorophanus. Z. Naturforsch.11b, 513–524 (1956)Google Scholar
  10. Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowflyCalliphora erythrocephala. Z. Naturforsch.31c, 629–633 (1976)Google Scholar
  11. Land, M.F., Collett, T.S.: Chasing behavior of houseflies (Fannia canicularis). J. comp. Physiol.89, 331–357 (1974)Google Scholar
  12. McCann, G.D., MacGinitie, G.F.: Optomotor response studies of insect vision. Proc. Roy. Soc. Lond. B163, 369–401 (1965)Google Scholar
  13. Nachtigall, W.: Insects in flight. New York: McGraw-Hill 1968Google Scholar
  14. Pick, B.: Visual pattern discrimination as an element of the fly's orientation behavior. Biol. Cybernetics23, 171–180 (1976)Google Scholar
  15. Poggio, T., Reichardt, W.: A theory of pattern induced flight orientation of the flyMusca domestica. Kybernetik12, 185–203 (1973)Google Scholar
  16. Reichardt, W.: Movement perception in insects. In: Processing of optical data by organisms and by machines (ed. W. Reichardt). New York: Academic Press 1969Google Scholar
  17. Reichardt, W.: Musterinduzierte Flugorientierung Verhaltens-Versuche an der FliegeMusca domestica. Naturwissenschaften60, 122–138 (1973)Google Scholar
  18. Schneider, G.: Zur spektralen Empfindlichkeit des Komplexauges vonCalliphora. Z. vergl. Physiol.39, 1–20 (1956)Google Scholar
  19. Srinivasan, M.V., Bernard, G.D.: The pursuit response of the housefly and its interaction with the optomotor response. J.comp. Physiol.115, 101–117 (1977)Google Scholar
  20. Thorson, J.: Small-signal analysis of a visual reflex in the locust. Kybernetik3, 41–66 (1966)Google Scholar
  21. Virsik, R.P., Reichardt, W.: Detection and tracking of moving objects by the flyMusca domestica. Biol. Cybernetics23, 83–98 (1976)Google Scholar
  22. Vogel, S.: Flight inDrosophila I. Flight performance of tethered flies. J. exp. Biol.44, 567–578 (1966)Google Scholar
  23. Wehner, R., Wehner-von Segesser, S.: Calculation of visual receptor spacing inDrosophila melanogaster by pattern recognition experiments. J. comp. Physiol.82, 165–177 (1973)Google Scholar
  24. Wehrhahn, C., Reichardt, W.: Visually induced height orientation of the flyMusca domestica. Biol. Cybernetics20, 37–50 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Mandyam V. Srinivasan
    • 1
  1. 1.Department of Ophthalmology and Visual ScienceYale UniversityNew HavenUSA

Personalised recommendations