Journal of Low Temperature Physics

, Volume 26, Issue 3–4, pp 385–405 | Cite as

Radiation-stimulated superconductivity

  • T. M. Klapwijk
  • J. N. van den Bergh
  • J. E. Mooij
Article

Abstract

Eliashberg has predicted that absorption of microwaves in a superconducting film leads to an increase of the energy gap by creating a nonequilibrium quasiparticle distribution. The frequency has to exceed the inverse relaxation time for inelastic scattering. In the present paper measurements are reported of the critical current of long, narrow, superconducting thin-film strips of aluminum subjected to high-frequency radiation (10 MHz–10 GHz). Above a critical frequency of about 200 MHz considerable enhancement of critical current and critical temperature is observed. Analysis of the results is performed by taking the critical current for a measure of the energy gap. The results are in reasonable agreement with Eliashberg's theory. As predicted, the transition between the superconducting and the normal states becomes of first order. The experimental results on critical current enhancement of micro-bridges (Dayem-Wyatt effect) can be explained consistently with gap enhancement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson and A. H. Dayem,Phys. Rev. Lett. 13, 195 (1964).Google Scholar
  2. 2.
    P. E. Gregers-Hansen, M. T. Levinsen, and G. Fog Pedersen,J. Low Temp. Phys. 7, 99 (1972).Google Scholar
  3. 3.
    A. F. G. Wyatt, V. M. Dmitriev, W. S. Moore, and F. W. Sheard,Phys. Rev. Lett. 16, 1166 (1966).Google Scholar
  4. 4.
    A. H. Dayem and J. J. Wiegand,Phys. Rev. 155, 419 (1967).Google Scholar
  5. 5.
    A. F. G. Wyatt and D. H. Evans,Physica 55, 288 (1971).Google Scholar
  6. 6.
    Yu. I. Latyshev and F. Ya. Nad',Sov. Phys.—JETP Lett. 19, 380 (1974).Google Scholar
  7. 7.
    D. W. Jillie, J. Lukens, and Y. H. Kao,IEEE MAG 11, 671 (1975).Google Scholar
  8. 8.
    H. A. Notarys and J. E. Mercereau,Physica 55, 424 (1971).Google Scholar
  9. 9.
    H. A. Notarys, M. L. Yu, and J. E. Mercereau,Phys. Rev. Lett. 30, 743 (1973).Google Scholar
  10. 10.
    T. J. Tredwell and E. H. Jacobsen,Phys. Rev. B 13, 2931 (1976).Google Scholar
  11. 11.
    T. J. Tredwell and E. H. Jacobsen,Phys. Rev. Lett. 35, 244 (1975).Google Scholar
  12. 12.
    K. W. Shepard,Physica 55, 786 (1971).Google Scholar
  13. 13.
    W. H. Henkels, Ph.D. Thesis, Cornell (1974), and private communication.Google Scholar
  14. 14.
    T. M. Klapwijk and J. E. Mooij,Physica 81B, 132 (1976).Google Scholar
  15. 15.
    T. K. Hunt and J. E. Mercereau,Phys. Rev. Lett. 30, 551 (1967).Google Scholar
  16. 16.
    P. V. Christiansen, E. B. Hansen, and G. J. Sjöström,J. Low Temp. Phys. 4, 349 (1971).Google Scholar
  17. 17.
    M. T. Levinsen,Rev. Phys. Appl. 9, 135 (1974).Google Scholar
  18. 18.
    P. E. Lindelof,Solid State Commun. 18, 283 (1976).Google Scholar
  19. 19.
    G. M. Eliashberg,Sov. Phys.—JETP Lett. 11, 114 (1970).Google Scholar
  20. 20.
    G. M. Eliashberg,Sov. Phys.—JETP 34, 668 (1972).Google Scholar
  21. 21.
    B. I. Ivlev and G. M. Eliashberg,Sov. Phys.—JETP Lett. 13, 333 (1971).Google Scholar
  22. 22.
    B. I. Ivlev, S. G. Lisitsyn, and G. M. Eliashberg,J. Low Temp. Phys. 10, 449 (1973).Google Scholar
  23. 23.
    A. Schmid, to be published.Google Scholar
  24. 24.
    D. Saint James, G. Sarma, and E. J. Thomas,Type II Superconductivity (Pergamon, 1969), Chapter 5.Google Scholar
  25. 25.
    P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).Google Scholar
  26. 26.
    M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975).Google Scholar
  27. 27.
    T. K. Hunt,Phys. Rev. 151, 325 (1966).Google Scholar
  28. 28.
    W. J. Skocpol, Ph.D. Thesis, Harvard (1974).Google Scholar
  29. 29.
    V. P. Andratskii, L. M. Grundel, V. N. Gubankov, and N. B. Pavlov,Sov. Phys.—JETP 38, 794 (1974).Google Scholar
  30. 30.
    W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Appl. Phys. 45, 4054 (1974).Google Scholar
  31. 31.
    F. R. Fickett,Cryogenics 11, 349 (1971).Google Scholar
  32. 32.
    T. M. Klapwijk and J. E. Mooij,Phys. Lett. 57A, 97 (1976).Google Scholar
  33. 33.
    NBS Technical Note 385.Google Scholar
  34. 34.
    J. L. Levine and S. Y. Hsieh,Physica 55, 471 (1971).Google Scholar
  35. 35.
    T. M. Klapwijk and T. B. Veenstra,Phys. Lett. 47A, 351 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • T. M. Klapwijk
    • 1
  • J. N. van den Bergh
    • 1
  • J. E. Mooij
    • 1
  1. 1.Department of Applied PhysicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations