Advertisement

Journal of Low Temperature Physics

, Volume 10, Issue 1–2, pp 79–93 | Cite as

The description of superconductivity in terms of dielectric response function

  • D. A. Kirzhnits
  • E. G. Maksimov
  • D. I. Khomskii
Article

Abstract

A critical temperatureTc of a superconducting transition is calculated for a rather general form of the electron-electron interaction. It is shown that even if both the energy and momentum dependence of the interaction is included, the equation determiningTc coincides formally with the corresponding equation of the BCS theory. The kernel of this equation is a smooth real function of its variables; it is expressed through ρ(k, E), the spectral density of the inverse dielectric function of the system. The expression forTc is written in terms of ρ(k, E); this enables us to analyze the dependence of the critical temperature on the properties of the metal in a normal state. Some simple models illustrating the results are considered, and a discussion of the limits onTc is given.

Keywords

Normal State Simple Model Response Function Critical Temperature Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  2. 2.
    D. Pines and P. Nosieres,The Theory of Quantum Liquids (Benjamin, New York, 1966), Vol. 1.Google Scholar
  3. 3.
    N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959).Google Scholar
  4. 4.
    G. M. Eliashberg,Soviet Phys.—JETP 38, 966 (1960);39, 1437 (1960).Google Scholar
  5. 5.
    P. Morel and P. W. Anderson,Phys. Rev. 125, 1263 (1962).Google Scholar
  6. 6.
    J. R. Schrieffer,Theory of Superconductivity (Benjamin, New York, 1964).Google Scholar
  7. 7.
    W. A. McMillan,Phys. Rev. 167, 331 (1967).Google Scholar
  8. 8.
    E. G. Batyjev,Soviet Phys.—Solid State 6, 3554 (1964).Google Scholar
  9. 9.
    G. Gusman and R. Brout,J. Phys. Chem. Solids 26, 223 (1965).Google Scholar
  10. 10.
    D. A. Kirzhnits, E. G. Maksimov, and D. I. Khomskii, Preprint N 108, Lebedev Physical Inst., 1970.Google Scholar
  11. 11.
    J. P. Hurault,J. Phys. Chem. Solids 29, 1765 (1968).Google Scholar
  12. 12.
    L. Hedin and S. Lundqvist,Solid State Physics, F. Seitz, ed. (Academic Press, New York, 1969), Vol. 23, p. 2.Google Scholar
  13. 13.
    M. L. Cohen and P. W. Anderson, Preprint SST/50/1971, Cavendish Lab., 1971.Google Scholar
  14. 14.
    V. L. Ginzburg and D. A. Kirzhnits, Preprint N 17, Lebedev Physical Inst., 1972.Google Scholar
  15. 15.
    V. L. Ginzburg,Usp. Fiz. Nauk 101, 185 (1970) [English transl.,Soviet Phys.—Usp. 13, 335 (1970)].Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • D. A. Kirzhnits
    • 1
  • E. G. Maksimov
    • 1
  • D. I. Khomskii
    • 1
  1. 1.P. N. Lebedev Physical InstituteMoscowUSSR

Personalised recommendations