Journal of Low Temperature Physics

, Volume 25, Issue 1–2, pp 145–175

Superconducting and normal state properties of Li1+xTi2−xO4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility

  • D. C. Johnston
Article
  • 701 Downloads

Abstract

LiTi2O4 is one end member of the homogeneity range of the spinel phase Li1+xTi2−xO4 (0≤x≤1/3) and is superconducting at temperatures up to 13.7 K. Various measurements were carried out in order to characterize the superconducting and normal state properties of LiTi2O4 and of other compositions within the homogeneity range of the spinel phase. These measurements establish LiTi2O4 as ad-band superconductor and show thatTc decreases to <1.5 K forx≳0.1. This disappearance of superconductivity with increasingx was found to be correlated with anomalous changes in the lattice parameter with composition, and, from electrical resistivity measurements, is tentatively attributed to the occurrence of a composition-induced metal-semiconductor transition atx≈0.1. The metallic character of LiTi2O4 and the composition dependence of the observed electrical properties are shown to follow from crystallographic considerations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Schooley, W. R. Hosler, and M. L. Cohen,Phys. Rev. Lett. 12, 474 (1964).Google Scholar
  2. 2.
    J. K. Hulm, C. K. Jones, R. Mazelsky, R. C. Miller, R. A. Hein, and J. W. Gibson, inLow Temp. Phys.—LT9 (Plenum, New York, 1965), Part A, p. 600.Google Scholar
  3. 3.
    N. J. Doyle, J. K. Hulm, C. K. Jones, R. C. Miller, and A. Taylor,Phys. Lett. 26A, 604 (1968).Google Scholar
  4. 4.
    M. D. Banus,Mat. Res. Bull. 3, 723 (1968).Google Scholar
  5. 5.
    M. D. Banus and T. B. Reed, inThe Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O'Keeffe, eds. (North-Holland, Amsterdam, 1970), p. 488.Google Scholar
  6. 6.
    J. K. Hulm, C. K. Jones, R. A. Hein, and J. W. Gibson,J. Low Temp. Phys. 7, 291 (1972).Google Scholar
  7. 7.
    H. R. Khan, Ch. J. Raub, W. E. Gardner, W. A. Fertig, D. C. Johnston, and M. B. Maple,Mat. Res. Bull. 9, 1129 (1974).Google Scholar
  8. 8.
    B. T. Matthias,Physica 69, 54(1973).Google Scholar
  9. 9.
    B. T. Matthias,Int. J. Quantum Chem., Symp. No. 8, p. 499 (1974).Google Scholar
  10. 10.
    D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan,Mat. Res. Bull. 8, 777 (1973).Google Scholar
  11. 11.
    A. Deschanvres, B. Raveau, and Z. Sekkal,Mat. Res. Bull. 6, 699 (1971).Google Scholar
  12. 12.
    D. B. Rogers, J. L. Gillson, and T. E. Gier,Solid State Comm. 5, 263 (1967).Google Scholar
  13. 13.
    D. C. Johnston, unpublished results.Google Scholar
  14. 14.
    H. Kessler and M. J. Sienko,J. Chem. Phys. 55, 5414 (1971).Google Scholar
  15. 15.
    D. C. Johnston, Ph.D. Thesis, University of California, San Diego (1975), unpublished;Diss. Abs. Int. 35(11) (1975).Google Scholar
  16. 16.
    International Tables for X-ray Crystallography, Vol. III (Kynoch Press, Birmingham, 1965), p. 202.Google Scholar
  17. 17.
    L. J. van der Pauw,Philips Res. Rep. 13, 1 (1958).Google Scholar
  18. 18.
    D. K. Wohlleben, Ph. D. Thesis, University of California, San Diego (1968), unpublished.Google Scholar
  19. 19.
    D. Wohlleben and M. B. Maple,Rev. Sci. Inst. 42, 1573 (1971).Google Scholar
  20. 20.
    W. G. Wyckoff,Crystal Structures, 2nd ed., (Interscience, New York, 1965), Vol. 3, p. 76.Google Scholar
  21. 21.
    V. Sadagopan, E. Pollard, and H. C. Gatos,Solid State Comm. 3, 97 (1965).Google Scholar
  22. 22.
    G. H. Jonker, inInternational Symposium on the Reactivity of Solids, 3rd, Madrid, 1957 (1958), Vol. 1, p. 413.Google Scholar
  23. 23.
    F. Bertaut and A. Durif,Compt. Rend. 236, 212 (1953).Google Scholar
  24. 24.
    G. Blasse,Philips Res. Rep. Suppl. (1964).Google Scholar
  25. 25.
    A. Lecerf,Ann. Chim. (Paris)7, 513 (1962).Google Scholar
  26. 26.
    R. K. Datta and R. Roy,J. Am. Ceram. Soc. 50, 578 (1967).Google Scholar
  27. 27.
    H. Okazaki,Japan. J. Appl. Phys. 5, 559 (1966).Google Scholar
  28. 28.
    P. Poix,Ann. Chim. 10, 49 (1965).Google Scholar
  29. 29.
    R. W. McCallum, D. C. Johnston, C. A. Luengo, and M. B. Maple,J. Low Temp. Phys. 25, 177 (1976).Google Scholar
  30. 30.
    J. K. Hulm, C. K. Jones, D. W. Deis, H. A. Fairbank, and P. A. Lawless,Phys. Rev. 169, 388 (1968), and references therein.Google Scholar
  31. 31.
    S. Geller and G. W. Hull, Jr.,Phys. Rev. Lett. 13, 127 (1964).Google Scholar
  32. 32.
    C. Kittel,Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 373.Google Scholar
  33. 33.
    N. F. Mott,Contemp. Phys. 14, 401 (1973), and references therein.Google Scholar
  34. 34.
    P. W. Selwood,Magnetochemistry, 2nd ed. (Interscience, New York, 1956), p. 78.Google Scholar
  35. 35.
    H. P. R. Frederikse and G. A. Candela,Phys. Rev. 147, 583 (1966).Google Scholar
  36. 36.
    F. E. Senftle and A. N. Thorpe,Phys. Rev. 175, 1144 (1968).Google Scholar
  37. 37.
    R. M. White,Quantum Theory of Magnetism (McGraw-Hill, New York, 1970), p. 86.Google Scholar
  38. 38.
    M. B. Robin and P. Day,Adv. Inorg. Chem. Radiochem. 10, 247 (1967).Google Scholar
  39. 39.
    C. J. Ballhausen,Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).Google Scholar
  40. 40.
    P. H. Keesom and G. Seidel,Phys. Rev. 113, 33 (1959).Google Scholar
  41. 41.
    D. G. Wickham and J. B. Goodenough,Phys. Rev. 115, 1156 (1959).Google Scholar
  42. 42.
    B. L. Dubey and A. R. West,Nature (Phys. Sci.) 235, 155 (1972).Google Scholar
  43. 43.
    B. L. Dubey and A. R. West,J. Inorg. Nucl. Chem. 35, 3713 (1973).Google Scholar
  44. 44.
    E. Kordes,Fortschr. Mineralog. 18, 27 (1934).Google Scholar
  45. 45.
    E. Kordes,Z. Krist., Mineralog. Petrogr. Abt. A92, 139 (1935).Google Scholar
  46. 46.
    G. Lang,Z. Anorg. Allgem. Chem. 276, 77 (1954).Google Scholar
  47. 47.
    J. F. Dorrian and R. E. Newnham,Mat. Res. Bull. 4, 179 (1969).Google Scholar
  48. 48.
    F. F. Barblan,Schweiz. Min. Pett. Mitt. 23, 295 (1943).Google Scholar
  49. 49.
    F. Barblan, E. Brandenberger, and P. Niggli,Helv. Chim. Acta 27, 88 (1944).Google Scholar
  50. 50.
    A. Lecerf,Compt. Rend. 254, 2003 (1962).Google Scholar
  51. 51.
    B. Reuter and R. Weber,Naturwiss. 53, 251 (1966).Google Scholar
  52. 52.
    A. Jostsons and P. McDougall, inInternational Conference on Titanium, London, 1968, p. 745 and references therein.Google Scholar
  53. 53.
    E. Hilti,Naturwiss. 55, 130 (1968).Google Scholar
  54. 54.
    D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin,Acta Cryst. 23, 307 (1967).Google Scholar
  55. 55.
    K. H. Kim and F. A. Hummel,J. Am. Ceram. Soc. 43, 611 (1960).Google Scholar
  56. 56.
    M. Lundberg and S. Andersson,Acta Chem. Scand. 18, 817 (1964).Google Scholar
  57. 57.
    A. M. Byström,Acta Chem. Scand. 3, 163 (1949).Google Scholar
  58. 58.
    R. S. Roth, H. S. Parker, and W. S. Brower,Mat. Res. Bull. 8, 327 (1973).Google Scholar
  59. 59.
    F. A. Hummel and Tseng-Ying Tien,J. Am. Ceram. Soc. 42, 206 (1959).Google Scholar
  60. 60.
    A. Taylor and N. J. Doyle, inThe Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O'Keeffe, eds. (North-Holland, Amsterdam, 1970), p. 523.Google Scholar
  61. 61.
    E. Hilti and F. Laves,Naturwiss. 55, 131 (1968).Google Scholar
  62. 62.
    M. Lenglet,Rev. Chim. Min. 2, 217 (1965).Google Scholar
  63. 63.
    M. P. Mathur, M. Ashkin, J. K. Hulm, C. K. Jones, M. M. Conway, N. E. Phillips, H. E. Simon, and B. B. Triplett,Low Temperature Physics—LT 13 (Plenum, New York, 1974), Vol. 2, p. 601.Google Scholar
  64. 64.
    G. S. Pawley, W. Cochran, R. A. Cowley, and G. Dolling,Phys. Rev. Lett. 17, 753 (1966).Google Scholar
  65. 65.
    H. P. R. Frederikse, W. R. Thurber, and W. R. Hosler,Phys. Rev. 134, A442 (1964).Google Scholar
  66. 66.
    E. Ambler, J. H. Colwell, W. R. Hosler, and J. F. Schooley,Phys. Rev. 148, 280 (1966).Google Scholar
  67. 67.
    T. Mitsui and W. B. Westphal,Phys. Rev. 124, 1354 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • D. C. Johnston
    • 1
  1. 1.Institute for Pure and Applied Physical SciencesUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations