Physics and Chemistry of Minerals

, Volume 12, Issue 6, pp 370–378 | Cite as

Magnetic properties of sheet silicates; 2:1:1 layer minerals

  • O. Ballet
  • J. M. D. Coey
  • K. J. Burke


Magnetization, susceptibility and Mössbauer spectra are reported for representative chlorite samples with differing iron content. The anisotropy of the susceptibility and magnetization of a clinochlore crystal is explained using the trigonal effective crystal-field model developed earlier for 1:1 and 2:1 layer silicates, with a splitting of theT2g triplet of 1,120K. Predominant exchange interactions in the iron-rich samples are ferromagnetic withJ=1.2 K, as for other trioctahedral ferrous minerals. A peak in the susceptibility of thuringite occurs atTm=5.5 K, and magnetic hyperfine splitting appears at lower temperatures in the Mössbauer spectrum. However neutron diffraction reveals no long-range magnetic order in thuringite (or biotite, which behaves similarly). The only magnetic contribution to the diffraction pattern at 1.6 K is increased small angle scattering (q<0.4 Å−1). A factor favouring this random ferromagnetic ground state over the planar antiferromagnetic state of greenalite and minnesotaite is the presence of pairs of ferric ions on adjacent sites, in conjunction with magnetic vacancies in the octahedral sheets. Monte Carlo simulations of the magnetic ground state of the sheets illustrate how long range ferromagnetic order may be destroyed by vortices forming around the Fe3+-Fe3+ pairs.


Chlorite Hyperfine Splitting Small Angle Scattering Layer Mineral Magnetic Hyperfine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 1–124Google Scholar
  2. Ballet O (1979) Fe2+ dans les silicates lamellaires: Étude magnétique et Mössbauer. Thèse de Troisième Cycle, GrenobleGoogle Scholar
  3. Ballet O, Coey JMD (1982) Magnetic properties of sheet silicates; 2:1 layer minerals. Phys Chem Minerals 8:218–229 (Paper II)Google Scholar
  4. Ballet O, Coey JMD, Mangin P, Townsend MG (1985) Ferrous talc — a planar antiferromagnet. Solid State Commun 55:787–790Google Scholar
  5. Blaauw C, Stroik G, Leiper W (1980) Mössbauer analysis of talc and chlorite. J Physique 41:Cl 411–412Google Scholar
  6. Blaauw C, Stroink G, Leiper W, Zentilli M (1979) Crystal-field properties of iron in brucite. Phys Status Solidi b92:639–643Google Scholar
  7. Borggard OK, Lindgreen HB, Mrup S (1982) Oxidation and reduction of structural iron in chlorite at 480° C. Clays Clay Miner 30:353–364Google Scholar
  8. Brown G, Brindley GW (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds). Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 305–306Google Scholar
  9. Coey JMD (1984) Silicate Minerals. In: Long CJ (ed) Chemical Applications of Mössbauer Spectroscopy, vol 1. Plenum, New York, Ch 14, pp 443–509Google Scholar
  10. Coey JMD, Ballet O, Moukarika A, Soubeyroux JL (1981) Magnetic properties of sheet silicates; 1:1 layer minerals. Phys Chem Minerals 7:141–148 (Paper I)Google Scholar
  11. Coey JMD, Chukhrov FV, Zvyagin BB (1984) Cation distribution, Mössbauer spectra and magnetic properties of ferripyrophyllite. Clays and Clay Minerals 32:198–204Google Scholar
  12. Foster MD (1962) Interpretation of the composition and a classification of the chlorites. Prof Pap US Geol Surv: 414-A, 1–33Google Scholar
  13. Goodman BA, Bain DC (1979) Mössbauer spectra of chlorites and their decomposition products. In: Mortland MM, Farmer VC (eds) Proc Inst Clay Conf, Oxford 1978. Elsevier, Amsterdam, pp 65–74Google Scholar
  14. Hayashi H, Sano H, Shirozu H (1972) Mössbauer spectra of chlorites in natural and heated states. Kobutzugaku Zasshi 10:507–516 (in Japanese)Google Scholar
  15. Joswig W, Fuess H, Rothbauer R, Takeuchi Y, Mason SA (1980) A neutron diffraction study of a one-layer triclinic chlorite (penninite). Am Mineral 65:349–352Google Scholar
  16. Kodama H, Longworth G, Townsend MG (1982) Mössbauer investigation of some chlorites and their oxidation products. Can Mineral 20:585–592Google Scholar
  17. Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C 6:1181–1203Google Scholar
  18. Miyamoto H, Shinjo T, Bando Y, Takada T (1967) Mössbauer effect of57Fe in Fe(OH)2. Bull Inst Chem Res Kyoto Univ 45:331–341Google Scholar
  19. Miyamoto H (1976) Magnetic properties of Fe(OH)2. Mater Res Bull 11:329–333Google Scholar
  20. Petruk W (1964) Determination of the heavy atom content in chlorite by means of the X-ray diffractometer. Am Mineral 49:53–71Google Scholar
  21. Petruk W (1965) Relationship between the specific magnetic susceptibility and the iron plus manganese content of chlorite. Can Mineral 8:372–376Google Scholar
  22. Ross GJ, Kodama H (1976) Experimental transformation of a chlorite into a vermiculite. Clays Clay Miner 22:205–211Google Scholar
  23. Steinfink H, Brunton G (1956) The crystal structure of amesite. Acta Crystallogr 9:487–492Google Scholar
  24. Townsend MG, Longworth G, Kodama H (unpublished) Magnetic interaction at low temperature in chlorites and their oxidation products. A Mössbauer investigationGoogle Scholar
  25. Townsend MG, Longworth G, Roudaut E (1985) Field-induced ferromagnetism in minnesotaite. Phys Chem Minerals 12:9–12Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • O. Ballet
    • 1
  • J. M. D. Coey
    • 1
  • K. J. Burke
    • 1
  1. 1.Department of Pure and Applied PhysicsTrinity CollegeDublin 2Ireland

Personalised recommendations