Astrophysics and Space Science

, Volume 106, Issue 1, pp 103–115 | Cite as

Accretion spin-up of low-magnetic neutron stars

  • V. M. Lipunov
  • K. A. Postnov
Article

Abstract

The present paper is concerned with the spin-up of low-magnetic neutron stars by the accretion of matter onto the star. Calculations have been made for the evolution of the rotation of a neutron star and applied to different stellar models. It is shown that the existence of a millisecond pulsar imposes no restriction on any of the equations of state considered. However, constraints would arise with the possible discovery of ‘third-octave pulsars’ (with frequencies in excess of 1000 Hz). Predictions are made as to the distribution of bursters over the orbital periods of neutron stars (about half of these having similar orbital periods). It is demonstrated that in the case of continued accretion onto a star, after it has acquired the critical angular frequency allowing no diviation from axial symmetry, specific accretion disks can be formed with a smooth transition into a star. The specific angular momentum is computed for a neutron star for the instant of the attainment of the Oppenheimer-Volkoff limit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpar, M. A., Cheng, A. F., Ruderman, M. A., and Shaham, J.: 1982,Nature 300, 728.Google Scholar
  2. Arnett, W. D. and Bowers, R. L.: 1977,Astrophys. J. Suppl. Ser. 33, 415.Google Scholar
  3. Backer, D., Kulkarni, S., Heiles, C., Davies, M., and Goss, M.: 1982,Nature 300, 615.Google Scholar
  4. Bisnovatyi-Kogan, G. S. and Komberg, B. V.: 1974,Astron. Zh. 51, 373.Google Scholar
  5. Butterworth, E. M.: 1979,Astrophys. J. 231, 219.Google Scholar
  6. Camenzind, M.: 1982, in W. Brinkmann and J. Trümper (eds.), ‘Accreting Neutron Stars’,MPI Rep. 1977, p. 156.Google Scholar
  7. Canuto, V. and Bowers, R. L.: 1981, in W. Sieber and E. Wielebinski (eds.), ‘Pulsars’,IAU Symp. 95, 321.Google Scholar
  8. Chandrasekhar, S.: 1969,Ellipsoidal Figures of Equilibrium, Yale University Press, Yale.Google Scholar
  9. Chandrasekhar, S.: 1970,Astrophys. J. 161, 571.Google Scholar
  10. Harding, A. K.: 1983,Nature 303, 683.Google Scholar
  11. Ipser, J. R. and Managan, R. A.: 1981,Astrophys. J. 250, 362.Google Scholar
  12. Joss, P. S. and Rappaport, S. A.: 1983,Nature 304, 419.Google Scholar
  13. Kardashev, N. S.: 1964,Astron. Zh. 41, 807.Google Scholar
  14. Lipunov, V. M.: 1982,Astrophys. Space Sci. 85, 461.Google Scholar
  15. Lipunov, V. M.: 1983,Astrophys. Space Sci. 97, 121.Google Scholar
  16. Novikov, I. D. and Thorne, K. S.: 1972, in C. Dewitt and B. S. DeWitt (eds.),Black Holes, Gordon and Breach, New York, p. 343.Google Scholar
  17. Pages, D. N. and Thorne, K. S.: 1974,Astrophys. J. 191, 499.Google Scholar
  18. Pringle, J. E. and Rees, M. J.: 1972,Astron. Astrophys. 21, 1.Google Scholar
  19. Schwartzmann, V. F.: 1970, Thesis, Moscow State University, Phys. Dept., Moscow.Google Scholar
  20. Shakura, N. I.: 1983, unpublished.Google Scholar
  21. Shakura, N. I. and Sunyaev, R. A.: 1973,Astron. Astrophys. 24, 337.Google Scholar
  22. Shakura, N. I. and Sunyaev, R. A.: 1977a,Pis'ma v Astron. Zh. 3, 216.Google Scholar
  23. Shakura, N. I. and Sunyaev, R. A.: 1977b,Pis'ma v Astron. Zh. 3, 262.Google Scholar
  24. Shapiro, S. L., Teukolsky, S. A., and Wassermann, I.: 1983,Astrophys. J. 272, 702.Google Scholar
  25. Srinivasan, G. and van den Heuvel, E. P. J.: 1981,Astrophys. J. 248, 504.Google Scholar
  26. Zel'dovich, Ya. B. and Novikov, I. D.: 1971,Teorya Tyagoteniya i Evolutziya Zvezd, Nauka, Moscow, p. 303.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • V. M. Lipunov
    • 1
  • K. A. Postnov
    • 1
  1. 1.Sternberg Astronomical InstituteMoscowUSSR

Personalised recommendations