Advertisement

Astrophysics and Space Science

, Volume 120, Issue 1, pp 139–149 | Cite as

Weak discontinuities in relativisitic MHD

  • A. V. Gopalakrishna
  • M. S. Ganagi
Article

Abstract

By using singular surface theory and ray theory the speeds of propagation of fast and slow waves, propagating into a medium in arbitrary motion, have been obtained in relativistic magnetohydrodynamics. The differential equation governing the growth of these waves along the rays has been derived and the solution has been presented in integral form.

Keywords

Differential Equation Slow Wave Integral Form Surface Theory Singular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gopalakrishna, A. V.: 1975,Comm. Math. Phys. 44, 39.Google Scholar
  2. Gopalakrishna, A. V.: 1977,Ann. Inst. Henri Poincaré 27, 367.Google Scholar
  3. Gopalakrishna, A. V.: 1983,Ann. Inst. Henri Poincaré 38, 401.Google Scholar
  4. Lichnerowicz, A.: 1967,Relativistic Hydrodynamics and MHD, Benjamin Inc., New York, p. 110.Google Scholar
  5. Maugin, G. A.: 1976,Ann. Inst. Henri Poincaré 24, 213.Google Scholar
  6. Maugin, G. A.: 1977,Comm. Math. Phys. 53, 233.Google Scholar
  7. Nariboli, G. A.: 1967,J. Math. Phys. Sci. 1, 163.Google Scholar
  8. Nariboli, G. A.: 1968, private communication.Google Scholar
  9. Nariboli, G. A.: 1969,Tensor, N. S. 20, 161.Google Scholar
  10. Synge, J. L.: 1965,Relativity; the Special Theory, North Holland Publ. Co., Amsterdam, p. 279.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • A. V. Gopalakrishna
    • 1
  • M. S. Ganagi
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations