Advertisement

Journal of Low Temperature Physics

, Volume 8, Issue 5–6, pp 511–529 | Cite as

Phonons and thermal properties of bcc and fcc helium from a self-consistent anharmonic theory

  • Heinz Horner
Article

Abstract

Numerical calculations of phonon spectra, including damping, are reported for bcc3He and4He and for fcc4He. Strong damping is found for the longitudinal branches near the boundary of the Brillouin zone. In the bcc phase anomalous dispersion occurs for several directions at long wavelengths, which is most pronounced in the lowest transverse branch in (110) direction. This leads to an anomaly in the specific heat at low temperatures. In this calculation anharmonicities and short-range correlations are treated in a self-consistent way.

Keywords

Helium Numerical Calculation Thermal Property Magnetic Material Brillouin Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born,Festschrift der Akademie der Wissenschaften (Göttingen, 1951); T. R. Koehler,Phys. Rev. Letters 17, 89 (1966).Google Scholar
  2. 2.
    P. Choquard,The Anharmonic Crystal (W. A. Benjamin, New York, 1967); H. Horner,Z. Physik 205, 72 (1967).Google Scholar
  3. 3.
    L. H. Nosanow,Phys. Rev. 146, 120 (1966).Google Scholar
  4. 4.
    B. H. Brandow,Phys. Rev. A4, 422 (1971), and papers cited therein.Google Scholar
  5. 5.
    T. R. Koehler,Phys. Rev. 165, 942 (1968); T. R. Koehler and N. R. Werthamer,Phys. Rev. A3, 2074 (1971).Google Scholar
  6. 6.
    H. Horner,Z. Physik 242, 432 (1971).Google Scholar
  7. 7.
    H. Horner,Phys. Rev. Letters 25, 147 (1970).Google Scholar
  8. 8.
    H. Horner,Solid State Commun. 9, 79 (1971).Google Scholar
  9. 9.
    H. R. Glyde,J. Low Temp. Phys. 3, 559 (1970); H. R. Glyde,Can. J. Phys. 49, 761 (1971); H. R. Glyde and F. C. Khanna,Can. J. Phys. 49, 2997 (1971).Google Scholar
  10. 10.
    G. Meissner,Phys. Rev. Letters 21, 435 (1968);Phys. Letters 27A, 261 (1968).Google Scholar
  11. 11.
    D. E. Beck,Mol. Phys. 14, 311 (1968).Google Scholar
  12. 12.
    L. Bohlin and T. Hogberg,J. Phys. Chem. Solids 29, 1805 (1968).Google Scholar
  13. 13.
    N. R. Werthamer,Phys. Rev. A2, 2050 (1970).Google Scholar
  14. 14.
    H. H. Sample and C. A. Swenson,Phys. Rev. 158, 188 (1967); R. C. Pandorf and D. O. Edwards,Phys. Rev. 169, 222 (1968).Google Scholar
  15. 15.
    P. N. Henriksen, M. F. Panczyk, S. B. Trickey, and D. E. Adams,Phys. Rev. Letters 23, 513 (1969).Google Scholar
  16. 16.
    R. A. Guyer,J. Low Temp. Phys. 6, 251 (1972).Google Scholar
  17. 17.
    W. Götze,Phys. Rev. 156, 951 (1967).Google Scholar
  18. 18.
    L. H. Nosanow and C. M. Varma,Phys. Rev. Letters 20, 912 (1968); A. McMahan, thesis, University of Minnesota, 1971; R. A. Guyer and L. I. Zane,Phys. Rev. 188, 445 (1969).Google Scholar
  19. 19.
    E. B. Osgood, V. J. Miniewicz, T. A. Kitchens, and G. Shirane,Phys. Rev. A5, 1537 (1972).Google Scholar
  20. 20.
    S. K. Sinha, C. Stassis, J. G. Traylor, and R. A. Reese, to be published.Google Scholar
  21. 21.
    R. Wanner,Phys. Rev. A3, 448 (1971).Google Scholar
  22. 22.
    D. S. Greywall,Phys. Rev. A3, 2106 (1971).Google Scholar
  23. 23.
    J. H. Vignos and H. A. Fairbank,Phys. Rev. 147, 185 (1966).Google Scholar
  24. 24.
    T. Schneider and E. Stoll, inComputational Solid State Physics, F. Herman, N. W. Dalton, and T. Koehler, eds. (Plenum Press, New York, 1972), 99.Google Scholar
  25. 25.
    T. R. Koehler,Conference on Quantum Crystals, Banff, Canada, 1971.Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • Heinz Horner
    • 1
  1. 1.Institut für Festkörperforschung Kernforschungsanlage JülichJülichGermany

Personalised recommendations