Advertisement

Astrophysics and Space Science

, Volume 239, Issue 1, pp 141–150 | Cite as

Inhomogeneous perfect fluid cosmologies in (4+1) dimensions

  • A. Banerjee
  • Ajanta Das
  • Madhumita Barua Basu
Article

Abstract

Exact solutions are obtained in (4+1) dimensions for plane symmetric and cylindrically symmetric inhomogeneous spacetimes. In the former case the three space depends on time only while the metric corresponding to the extra dimension is dependent on space as well as time coordinates. The cylindrically symmetric nonstatic solutions for the perfect fluid have no singularity near the axis, but show big bang type of singularity in the finite past. One of the classes of such solutions satisfies the barotropic equation of state of the form ρ=εp. Static solutions with cylindrically symmetric solutions are also obtained in 5 dimensions.

Keywords

Exact Solution Static Solution Extra Dimension Symmetric Solution Perfect Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applequist, T., Chodos, A. and Freund, P.: 1987,Modern Kaluza-Klien Theories, Addison-Wesley, Menlo Park, CA.Google Scholar
  2. 2.
    Sabbata, V. and Schmutzer, E.: 1983,Unified field theories of more than 4 dimensions including exact solutions, World Scientific, Singapore.Google Scholar
  3. 3.
    Chodos, A. and Detweiler, S.: 1980,Phys. Rev. D21, 2167.Google Scholar
  4. 4.
    Sahdev, D.: 1984,Phys. Lett. 137B, 155.Google Scholar
  5. 5.
    Chatterjee, S. and Banerjee, A.: 1993,Class. Quant. Grav. 10, L1–5.Google Scholar
  6. 6.
    Chatterjee, S., Panigrahi, D. and Banerjee, A.: 1994,Class. Quant. Grav. 11, 371.Google Scholar
  7. 7.
    Banerjee, A., Panigrahi, D. and Chatterjee, S.: 1994,Class. Quant. Grav. 11, 1405.Google Scholar
  8. 8.
    Davidson, W.: 1992,Gen. Relativ. Gravitation 24, 179.Google Scholar
  9. 9.
    Kramer, D.: 1988,Class. Quant. Grav. 5, 393.Google Scholar
  10. 10.
    Teixeira, A.F.da.F., Wolk, I. and Som, M.M.: 1977,Nuovo Cimento 41B, 387.Google Scholar
  11. 11.
    Levi-Civita, T.: 1917,Rond. Acc. Lincol. 26, 307.Google Scholar
  12. 12.
    Marder, L.: 1958,Proc. Roy. Soc., London, ser. A 244, 524.Google Scholar
  13. 13.
    da Silva, M.F.A., Herrera, L., Paiva, F.M. and Santos, N.O.: 1995,J. Math. Phys. 36, 3625.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Banerjee
    • 1
  • Ajanta Das
    • 1
  • Madhumita Barua Basu
    • 1
  1. 1.Relativity and Cosmology Research Centre, Department of PhysicsJadavpur UniversityCalcuttaIndia

Personalised recommendations