Advertisement

Journal of Solution Chemistry

, Volume 10, Issue 1, pp 1–20 | Cite as

Vapor pressure studies of hydrophobic interactions. formation of benzene-benzene and cyclohexane-cyclohexanol dimers in dilute aqueous solution

  • Edwin E. Tucker
  • Edwin H. Lane
  • Sherril D. Christian
Article

Abstract

A new, highly sensitive vapor pressure apparatus has been used to study very dilute solutions of benzene, of cyclohexane, and of mixtures of cyclohexane and cyclohexanol in water at temperatures from 15 to 45°C. The results have been used to calculate the enthalpy, free energy, and heat capacity of transfer of benzene and of cyclohexane from the vapor phase into water at infinite dilution. Values of the equilibrium constant and the enthalpy change have been determined for the reactions
$$2{\text{ benzene = (benzene)}}_{\text{2}} $$
(A)
and
$${\text{cyclohexane + cyclohexanol = cyclohexane }} \cdot {\text{ cyclohexanol}}$$
(B)
occurring in dilute aqueous solution. Of particular interest is the result that the enthalpy of dimerization is positive for the two association reactions [4.0±1.0 kcal-mol−1 for reaction (A) and 3.45±0.16 kcal-mol−1 for reaction (B) at 25°C]. The heat capacity change for reaction (B) is −61±39 cal-K−1-mol−1. The results are discussed in relation to current theories and descriptions of hydrophobic interactions.

Key Words

Vapor pressure hydrophobic interaction thermodynamics of transfer and dimerization benzene cyclohexane cyclohexanol water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Tucker and S. D. Christian,J. Phys. Chem. 83, 426 (1979).Google Scholar
  2. 2.
    For and excellent review of hydrophobic effects and attempts to rationalize them see F. Franks, inWater, A Comprehensive Treatise F. Franks, ed., Vol. 4 (Plenum Press, New York, 1973), Chapter 1.Google Scholar
  3. 3.
    S. J. Gill, N. F. Nichols, and I. Wadsöo,J. Chem. Thermodyn. 8, 445 (1976).Google Scholar
  4. 4.
    Reference 2 includes a discussion of the similarity in behavior between polar alkyl derivatives and the parent hydrocarbons; however, there is evidence that headgroup effects can modify certain solution properties of polar organic solutes in water (see for example G. C. Kresheck, H. Schneider, and H. A. Scheraga,J. Phys. Chem. 69, 3132 (1965) and references cited therein).Google Scholar
  5. 5.
    E. E. Tucker and S. D. Christian,J. Chem. Thermodyn. 11, 1137 (1979).Google Scholar
  6. 6.
    F. G. Keyes,J. Chem. Phys. 15, 602 (1947).Google Scholar
  7. 7.
    P. J. McElroy, T. W. Shannon, and A. G. Williamson,J. Chem. Thermodyn. 12, 371 (1980).Google Scholar
  8. 8.
    R. S. Hansen and F. A. Miller,J. Phys. Chem. 58, 193 (1954).Google Scholar
  9. 9.
    E. E. Tucker and S. D. Christian,J. Phys. Chem. 81, 1295 (1977).Google Scholar
  10. 10.
    B. Y. Okamoto, R. H. Wood, and P. T. Thompson,J. Chem. Soc. Faraday Trans. I 74, 1990 (1978).Google Scholar
  11. 11.
    J. H. Saylor, J. M. Stuckey, and P. M. Gross,J. Am. Chem. Soc. 60, 373 (1938).Google Scholar
  12. 12.
    A. A. Taha, R. D. Grigsby, J. R. Johnson, S. D. Christian, and H. E. Affsprung,J. Chem. Educ. 43, 432 (1966).Google Scholar
  13. 13.
    W. J. Green and H. S. Frank,J. Solution Chem. 8, 187 (1979).Google Scholar
  14. 14.
    C. McAuliffe,J. Phys. Chem. 70, 1267 (1966).Google Scholar
  15. 15.
    J. D. Cox and G. Pilcher,Thermochemistry of Organic and Organometallic Compounds, (Academic Press, London, 1970).Google Scholar
  16. 16.
    Physical Properties of Chemical Compounds, Advances in Chemistry Series, Vol. 15, (American Chemical Society, Washington, 1955).Google Scholar
  17. 17.
    Selected Values of Properties of Hydrocarbons and Related Compounds, A. P. I. Research Project 44, Thermodynamics Research Center, Dept. of Chem., Texas A&M University (1970).Google Scholar
  18. 18.
    H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945).Google Scholar
  19. 19.
    W. Kauzmann,Adv. Protein Chem. 14, 1 (1959).Google Scholar
  20. 20.
    J. J. Savage and R. H. Wood,J. Solution Chem. 5, 733 (1976).Google Scholar
  21. 21.
    H. L. Friedman and C. V. Krishnan,J. Solution Chem. 2, 119 (1973).Google Scholar
  22. 22.
    C. V. Krishnan and H. L. Friedman,J. Solution Chem. 3, 727 (1974).Google Scholar
  23. 23.
    P. J. Rossky and H. L. Friedman,J. Phys. Chem. 84, 587 (1980).Google Scholar
  24. 24.
    A. H. Clark, F. Franks, M. D. Pedley, and D. S. Reid,J. Chem. Soc. Faraday Trans. I 73, 290 (1977).Google Scholar
  25. 25.
    A. Ben-Naim, J. Wilf, Jr., and M. Yaacobi,J. Phys. Chem. 77, 95 (1973).Google Scholar
  26. 26.
    A. Ben-Naim,Hydrophobic Interactions, (Plenum Press, New York and London, 1980).Google Scholar
  27. 27.
    L. R. Pratt and David Chandler,J. Solution Chem. 9, 1 (1980).Google Scholar
  28. 28.
    S. Marcelja, D. J. Mitchell, B. W. Ninham, and M. J. Sculley,J. Chem. Soc. Faraday Trans. II 73, 630 (1977).Google Scholar
  29. 29.
    C. Pangali, M. Rao, and B. J. Berne, inComputer Modeling of Matter, P. Lykos, ed. (American Chemical Society, Anaheim, 1978).Google Scholar
  30. 30.
    A. Geiger, A. Rahman, and F. H. Stillinger,J. Chem. Phys. 70, 263 (1979).Google Scholar
  31. 31.
    C. Pangali, M. Rao, and B. J. Berne,J. Chem. Phys. 71, 2975 (1979).Google Scholar
  32. 32.
    M. Rao, C. Pangali, and B. J. Berne,Mol. Phys. 37, 1773 (1979).Google Scholar
  33. 33.
    J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).Google Scholar
  34. 34.
    R. M. Hill, unpublished work, this laboratory.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Edwin E. Tucker
    • 1
  • Edwin H. Lane
    • 1
  • Sherril D. Christian
    • 1
  1. 1.Department of ChemistryThe University of OklahomaNorman

Personalised recommendations