Astrophysics and Space Science

, Volume 90, Issue 1, pp 217–230 | Cite as

On the origin and structure of stellar magnetic fields

  • J. H. Piddington


Newly formed stars have magnetic fields provided by the compression of the interstellar field, and contrary to a widely accepted idea these fields are not destroyed by convective motions. For the same reason, the fallacy of ‘turbulent diffusion’, turbulent dynamo action is not possible in any star. Thus all stellar magnetic fields have a common origin, and persist throughout the lifetime of each star, including degenerate phases. This common origin, and a general similarity in stellar evolutionary processes, suggest that the fields may develop similar structural characteristics and MHD effects. This would open new possibilities of coordinating the studies of different types of stars and relating them to solar physics which has tended to become isolated from general stellar physics. As an initial step we consider three features of solar magnetic fields and their MHD effects. First, the solar magnetic field comprises two separate components: a poloidal field and a toroidal field. The former is a dipole field, permeating the entire Sun and closely aligned with the rotational axis; at the surface it is always concealed by much stronger elements of the toroidal field. The latter is probably wound from the former by differential rotation at latitudes below about 35°, where sections emerge through the solar surface and are then carried polewards. The second feature of solar magnetic fields is that all flux is concentrated into flux tubes of strength some kG, isolated within a much larger volume of non-magnetic plasma. The third feature is that the flux tubes are helically twisted into flux ropes (up to ≳1022Mx) and smaller elements ranging down to flux fibres (≲ 1018Mx). Some implications of similar features in other stars are discussed.


Common Origin Flux Tube Flux Rope Solar Surface Differential Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angel, J. R. P.: 1978,Ann. Rev. Astron. Astrophys. 16, 487.Google Scholar
  2. Babcock, H. W.: 1961,Astrophys. J. 133, 572.Google Scholar
  3. Belvedere, G., Paterno, L., and Stix, M.: 1980,Astron. Astrophys. 91, 328.Google Scholar
  4. Cowling, T. G.: 1981,Ann. Rev. Astron. Astrophys. 19, 115.Google Scholar
  5. Galloway, D. J. and Weiss, N. O.: 1981,Astrophys. J. 243, 945.Google Scholar
  6. Godoli, G.: 1976, in V. Bumba and J. Kleczek (eds.), ‘Basic Mechanicsms of Solar Activity’,IAU Symp. 71, 421.Google Scholar
  7. Harvey, J. W.: 1977, in E. Müller (ed.),Hightlights of Astronomy 4, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  8. Howard, R.: 1977,Ann. Rev. Astron. Astrophys. 15, 153.Google Scholar
  9. Larson, R. B.: 1972,Monthly Notices Roy. Astron. Soc. 157, 271.Google Scholar
  10. Leavy, E. H. and Rose, W. K.: 1974,Nature 250, 40.Google Scholar
  11. Linsky, J.: 1977, in O. R. White (ed.),The Solar Output and its Variations, Colorado Assoc. Univ. Press, Boulder, p. 477.Google Scholar
  12. Mestel, L. and Moss, D. L.: 1977,Monthly Notices Roy. Astron. Soc. 178, 27.Google Scholar
  13. Mestel, L. and Spitzer, L.: 1956,Monthly Notices Roy. Astron. Soc. 116, 503.Google Scholar
  14. Moss, D. L.: 1980,Astron. Astrophys. 91, 319.Google Scholar
  15. Mullan, D. J.: 1974,Astrophys. J. 192, 149.Google Scholar
  16. Novotny, E.: 1973,Introduction to Stellar Atmospheres and Interiors, Oxford Univ. Press, New York.Google Scholar
  17. Parker, E. N.: 1975,Astrophys. J. 202, 523.Google Scholar
  18. Piddington, J. H.: 1975,Astrophys. Space Sci. 34, 347.Google Scholar
  19. Piddington, J. H.: 1976a, in V. Bumba and J. Kleczek (eds.), ‘Basic Mechanisms of Solar Activity’,IAU Symp. 71, 389.Google Scholar
  20. Piddington, J. H.: 1976b,Astrophys. Space Sci. 41, 371.Google Scholar
  21. Piddington, J. H.: 1977a,Astrophys. Space Sci. 47, 237.Google Scholar
  22. Piddington, J. H.: 1977b,Astrophys. Space Sci. 47, 319.Google Scholar
  23. Piddington, J. H.: 1979a,Astrophys. J. 233, 727.Google Scholar
  24. Piddington, J. H.: 1979b,Aust. J. Phys. 32, 671.Google Scholar
  25. Piddington, J. H.: 1981a,Astrophys. J. 247, 293.Google Scholar
  26. Piddington, J. H.: 1981b,Cosmic Electrodynamics, Krieger, Malabar, Florida.Google Scholar
  27. Piddington, J. H.: 1981c,Astrophys. Space Sci. 75, 273.Google Scholar
  28. Piddington, J. H.: 1982,Astrophys. Space Sci. 87, 477.Google Scholar
  29. Robinson, R. D., Worden, S. P., and Harvey, J. W.: 1980,Astrophys. J. 236, L155.Google Scholar
  30. Schüssler, M. and Pähler, A.: 1978,Astron. Astrophys. 68, 57.Google Scholar
  31. Simon, T., Linsky, J. L., and Stencel, R. E.: 1982,Astrophys. J., in press.Google Scholar
  32. Stenflo, J. O.: 1976, in V. Bumba and J. Kleczek (eds.), ‘Basic Mechanisms of Solar Activity’,IAU Symp. 71, 69.Google Scholar
  33. Stix, M.: 1981,Solar Phys. 74, 79.Google Scholar
  34. Svalgaard, L., Duvall, T. L., and Scherrer, P. H.: 1978,Solar Phys. 59, 225.Google Scholar
  35. Timothy, A. F., Krieger, A. S., and Vaiana, G. S.: 1975,Solar Phys. 42, 135.Google Scholar
  36. Vaiana, G. S.: 1976,Phil. Trans. Roy. Soc. London A281, 365.Google Scholar
  37. Vaiana, G. S., Cassinelli, J. P., and Fabbiano, G.: 1981,Astrophys. J. 245, 163.Google Scholar
  38. Weiss, N. O.: 1966,Proc. Roy. Soc. London A293, 310.Google Scholar
  39. Wilson, O. C.: 1978,Astrophys. J. 226, 379.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1983

Authors and Affiliations

  • J. H. Piddington
    • 1
  1. 1.CSIRO Division of Applied PhysicsSydneyAustralia

Personalised recommendations