Journal of Solution Chemistry

, Volume 21, Issue 8, pp 745–760

Metal oxide solubility behavior in high temperature aqueous solutions

  • S. E. Ziemniak
Article

Abstract

The solubility behavior of metal oxides in sub- and super-critical aqueous solutions is quantified using thermodynamic concepts. Three physicochemical phenomena are discussed: (1) metal oxide solid phase stability; (2) metal oxide dissolution reaction equilibria; and (3) metal ion hydroxocomplex formation. Thermochemical properties of metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., elements having atomic numbers between 22 (Ti) and 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted at General Electric and elsewhere.

Key words

Aqueous solutions metal ion hydrolysis hydroxocomplexes thermodynamics equilibrium constant oxides corrosion pressurized water hydrothermal solutions supercritical fluids expansivity coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Tomlinson,J. Solution Chem. 14, 443 (1985)Google Scholar
  2. 2.
    S. E. Ziemniak and M. E. Jones, Report KAPL 4112, Knolls Atomic Power Laboratory (1978); cited by C. F. Baes and R. E. Mesmer,Am. J. Sci. 281, 935 (1981).Google Scholar
  3. 3.
    R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes,J. Solution Chem. 17, 699 (1988).Google Scholar
  4. 4.
    A. W. Laubengayer and H. W. McCune,J. Am. Chem. Soc. 74, 2362 (1952).Google Scholar
  5. 5.
    S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, unpublished data.Google Scholar
  6. 6.
    S. E. Ziemniak, M. E. Jones, and K. E. S. Combs,J. Solution Chem. 18, 1133 (1989).Google Scholar
  7. 7.
    M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud,J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).Google Scholar
  8. 8.
    V. P. Vasil'ev, V. N. Vasil'eva, N. G. Dmetrieva, P. N. Vorob'ev, and S. I. Trefilov,Russ. J. Inorg. Chem. 33, 1575 (1988).Google Scholar
  9. 9.
    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. NuttallJ. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).Google Scholar
  10. 10.
    I. Barin,Thermodynamics of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1989).Google Scholar
  11. 11.
    I. L. Khodakovskii and A. E. Elkin,Geokhimiya 10, 1490 (1975).Google Scholar
  12. 12.
    J. D. Cox, D. D. Wagman, and V. A. Medvedev,CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989).Google Scholar
  13. 13.
    C. F. Baes and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
  14. 14.
    C. F. Baes and R. E. Mesmer,Am. J. Sci. 281, 935 (1981).Google Scholar
  15. 15.
    P. R. Tremaine and J. C. LeBlanc,J. Solution Chem. 9, 415 (1980).Google Scholar
  16. 16.
    A. J. Paulson and D. R. Kester,J. Solution Chem. 9, 269 (1980).Google Scholar
  17. 17.
    S. E. Ziemniak, M. E. Jones, and K. E. S. Combs,J. Solution Chem. (submitted).Google Scholar
  18. 18.
    C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5390 (1964)Google Scholar
  19. 19.
    M. H. Abraham and Y. Marcus,J. Chem. Soc. Faraday Trans. I 82, 3255 (1986).Google Scholar
  20. 20.
    V. P. Vasil'ev, P. N. Vorob'ev, and I. L. Khodakovskii,Russ. J. Inorg. Chem. 19, 1481 (1974).Google Scholar
  21. 21.
    V. P. Vasil'ev, P. P. Vorob'ev, and V. I. Yashkova,Russ. J. Inorg. Chem. 31, 1076 (1986).Google Scholar
  22. 22.
    V. P. Vasil'ev and P. N. Vorob'ev,Russ. J. Phys. Chem. 43, 1605 (1969).Google Scholar
  23. 23.
    V. P. Vasil'ev, V. N. Vasil'eva, and O. G. Raskova,Russ. J. Inorg. Chem. 22, 1258 (1977).Google Scholar
  24. 24.
    W. M. Latimer,Oxidation Potentials (Prentice Hall, New York, 1952).Google Scholar
  25. 25.
    S. G. Bratsch,J. Phys. Chem. Ref. Data 18, 1 (1989).Google Scholar
  26. 26.
    J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler,J. Phys. Chem. 72, 2902 (1968).Google Scholar
  27. 27.
    G. Giasson and P. H. Tewari,Can. J. Chem. 56, 435 (1978).Google Scholar
  28. 28.
    S. E. Ziemniak, M. E. Jones and K. E. S. Combs,J. Solution Chem. 21, 179 (1992).Google Scholar
  29. 29.
    B. Hearn, M. R. Hunt, and A. Hayward,J. Chem. Eng. Data 4, 442 (1969).Google Scholar
  30. 30.
    M. Pourbaix,Atlas of Electrochemical Equilibria in Aqueous Solutions, (NACE, 1974).Google Scholar
  31. 31.
    V. P. Vasil'ev, V. N. Vasil'eva, N. G. Dmetrieva, P. N. Vorob'ev, A. G. Malakhova, and S. I. Trefilov,Russ. J. Inorg. Chem. 33, 1444 (1988).Google Scholar
  32. 32.
    F. H. Sweeton, R. E. Mesmer, and C. F. Baes,J. Solution Chem. 3, 191 (1974).Google Scholar
  33. 33.
    W. L. Marshall and E. U. Franck,J. Phys. Chem. Ref. Data 10, 295 (1981).Google Scholar
  34. 34.
    H. S. Frank and M. W. Evans,J. Chem. Phys. 3, 507 (1945).Google Scholar
  35. 35.
    W. L. Marshall,J. Phys. Chem. 74, 346 (1970).Google Scholar
  36. 36.
    W. L. Marshall,J. Phys. Chem. 76, 720 (1972).Google Scholar
  37. 37.
    L. Haar, J. S. Gallagher, and G. S. Kell,NBS/NRC Steam Tables (Hemisphere, Washington, 1984).Google Scholar
  38. 38.
    O. Glemser and H. G. Wendlandt, inAdvances in Inorganic Chemistry and Radiochemistry, Vol. 5, (Academic Press, New York, 1963).Google Scholar
  39. 39.
    H. G. Heitmann,Chemiker-Ztg./Chem. Apparatur 88, 891 (1964).Google Scholar
  40. 40.
    G. M. Anderson and C. W. Burnham,Am. J. Sci. 263, 494 (1965).Google Scholar
  41. 41.
    M. W. Shafer and R. Roy,Z. Anorg. Allgem. Chem. 276, 275 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. E. Ziemniak
    • 1
  1. 1.Knolls Atomic Power LaboratoryGeneral Electric CompanySchenectady

Personalised recommendations