Journal of Solution Chemistry

, Volume 17, Issue 6, pp 499–517 | Cite as

Aqueous solubilities of praseodymium, europium, and lutetium sulfates

  • Joseph A. Rard


The aqueous solubilities of finely divided Pr2(SO4)3·8H2O(cr), Eu2(SO4)3·8H2O(cr), and Lu2(SO4)3·8H2O(cr) have been measured as a function of time at 25°C using isothermal saturation. Solubilities of the latter two salts showed a steady decrease with time, whereas Pr2(SO4)3·8H2O(cr) showed no such variation within the accuracy of the determinations. The turbidities of these filtered saturated solutions also decreased with time, and indicate that some colloidal rare earth sulfates were present. These colloidal particles (<0.2 μm) have a large surface area, which contributes to the Gibbs energy of the solid phase, thus giving rise to enhanced solubilities. The micro-particles also grow with time, thereby reducing the surface area contribution to the Gibbs energy and also leaving fewer particles to pass through the filters. Extrapolation of solubilities to infinite time gives the solubilities of macrocurstalline Eu2(SO4)3·8H2O and Lu2(SO4)3·8H2O. Previous solubility data for Lu2(SO4)3, at 20 and 40°C, yield an interpolated value at 25°C that is about 30% low. Densities were also measured at several concentrations of each salt.

Key words

Solubilities praseodymium sulfate europium sulfate lutetium sulfate aqueous solutions densities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. C. Stewart,Data for Radioactive Waste Management and Nuclear Applications (Wiley Interscience, New York, 1985).Google Scholar
  2. 2.
    J. A. Rard,Chem. Rev. 85, 555 (1985).Google Scholar
  3. 3.
    A. I. Barabash, L. L. Zaitseva, and V. S. Il'yashenko,Russ. J. Inorg. Chem. (Engl. Trans.) 17, 1039 (1972).Google Scholar
  4. 4.
    K. S. Jackson and G. Rienäcker,J. Chem. Soc., 1687 (1930).Google Scholar
  5. 5.
    F. H. Spedding and S. Jaffe,J. Am. Chem. Soc. 76, 882 (1954).Google Scholar
  6. 6.
    A. V. Shevchuk and V. M. Skorikov,Russ. J. Inorg. Chem. (Engl. Trans.) 25, 622 (1980).Google Scholar
  7. 7.
    G. Brunisholz and M. Nozari,Revue Chim. Miner. 1, 673 (1964).Google Scholar
  8. 8.
    F. Wirth,Z. Anorg. Chem. 76, 174 (1912).Google Scholar
  9. 9.
    J. A. Rard, L. E. Shiers, D. J. Heiser, and F. H. Spedding,J. Chem. Eng. Data 22, 337 (1977).Google Scholar
  10. 10.
    J. A. Rard and F. H. Spedding,J. Chem. Eng. Data 26, 391 (1981).Google Scholar
  11. 11.
    J. A. Rard and F. H. Spedding,J. Chem. Eng. Data 27, 454 (1982).Google Scholar
  12. 12.
    J. A. Rard,J. Chem. Eng. Data 32, 334 (1987).Google Scholar
  13. 13.
    T. Moeller and H. E. Kremers,Chem. Rev. 37, 97 (1945).Google Scholar
  14. 14.
    W. L. Marshall and R. Slusher,J. Inorg. Nucl. Chem. 37, 2171 (1975).Google Scholar
  15. 15.
    M. M. Farrow and N. Purdie,J. Solution Chem. 2, 503 (1973).Google Scholar
  16. 16.
    W. W. Wendlandt,J. Inorg. Nucl. Chem. 7, 51 (1958).Google Scholar
  17. 17.
    M. W. Nathans and W. W. Wendlandt,J. Inorg. Nucl. Chem. 24, 869 (1962).Google Scholar
  18. 18.
    A. N. Pokrovskii and L. M. Kovba,Russ. J. Inorg. Chem. (Engl. Trans.) 21, 305 (1976).Google Scholar
  19. 19.
    B. V. Enüstün and J. Turkevich,J. Am. Chem. Soc. 82, 4502 (1960).Google Scholar
  20. 20.
    J. W. Haynes and J. J. Brown, Jr.,J. Electrochem. Soc. 115, 1060 (1968).Google Scholar
  21. 21.
    V. I. Ivanov,Sov. Phys.-Crystallog. (Engl. Trans.) 9, 553 (1965).Google Scholar
  22. 22.
    L. A. Aslanov, V. B. Rybakov, B. M. Ionov, M. A. Porai-Koshits, and V. I. Ivanov,Proc. Acad. Sci. USSR, Chem. Sect. (Engl. Trans.) 204, 508 (1972).Google Scholar
  23. 23.
    E. G. Sherry,J. Solid State Chem. 19, 271 (1976).Google Scholar
  24. 24.
    I. S. Ahmed Farag, M. A. El-Kordy, and N. A. Ahmed,Z. Kristallog. 155, 165 (1981).Google Scholar
  25. 25.
    W. Pies and A. Weiss, “Crystal Structure Data of Inorganic Compounds”, K.-H. Hellwege and A. M. Hellwege, eds.; Landolt-Börnstein New Series, Vol. III/7b3 (Springer-Verlag, Berlin, 1982), pp. 179–184.Google Scholar
  26. 26.
    L. L. Zaitseva, V. S. Il'yashenko, M. I. Konarev, L. N. Konovalov, L. V. Lipis, and N. T. Chebotarev,Russ. J. Inorg. Chem. (Engl. Trans.) 10, 961 (1965).Google Scholar
  27. 27.
    J. A. Rard and D. G. Miller,J. Chem. Eng. Data 29, 151 (1984).Google Scholar
  28. 28.
    G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).Google Scholar
  29. 29.
    F. H. Spedding, P. F. Cullen, and A. Habenschuss,J. Phys. Chem. 78, 1106 (1974).Google Scholar
  30. 30.
    R. G. de Carvalho and G. R. Choppin,J. Inorg. Nucl. Chem. 29, 737 (1967).Google Scholar
  31. 31.
    A. A. Sopueva, K. S. Sulaimankulov, and K. N. Nogoev,Russ. J. Inorg. Chem. (Engl. Trans.) 20, 445 (1975).Google Scholar
  32. 32.
    L. I. Kovalenko, K. Sulaimankulov, and B. MurzubraimovRuss. J. Inorg. Chem. (Engl. Trans.) 25, 1268 (1968).Google Scholar
  33. 33.
    F. H. Spedding, J. A. Rard, and V. W. Saeger,J. Chem. Eng. Data 19, 373 (1974).Google Scholar
  34. 34.
    J. A. Rard and F. H. Spedding,J. Phys. Chem. 79, 257 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Joseph A. Rard
    • 1
  1. 1.Earth Sciences DepartmentUniversity of California, Lawrence Livermore National LaboratoryLivermore

Personalised recommendations