Advertisement

Astrophysics and Space Science

, Volume 3, Issue 2, pp 258–267 | Cite as

Thermodynamic approach to the equation of state of a magnetized Fermi gas

  • V. Canuto
  • H. Y. Chiu
  • L. Fassio-Canuto
Article

Abstract

In this paper we have rederived the equations of state for a magnetized Fermi gas by generalizing the physical definition of the pressure. We have also given a simplified derivation of the energy eigenvalues of a free electron in a magnetic field, based on the use of simple harmonic oscillators. Physical interpretations of our results are presented. Possible astrophysical applications are also discussed.

Keywords

Magnetic Field Harmonic Oscillator Free Electron Physical Interpretation Energy Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canuto, V. andChiu, H. Y.: 1968a, ‘Quantum Theory of an Electron Gas in Intense Magnetic Fields’,Phys. Rev. 173, 1210.Google Scholar
  2. Canuto, V. andChiu, H. Y.: 1968b, ‘Thermodynamic Properties of a Magnetized Fermi Gas’,Phys. Rev. 173, 1220.Google Scholar
  3. Canuto, V. andChiu, H. Y.: 1968c, ‘The Magnetic Moment of a Magnetized Fermi Gas’,Phys. Rev. 173, 1229.Google Scholar
  4. Chiu, H. Y. andCanuto, V.: 1968,Phys. Rev. Letters 21, No. 5, 110.Google Scholar
  5. Chiu, H. Y., Canuto, V., andFassio-Canuto, L.: 1968, ‘Quantum Theory of an Electron Gas with Anomalous Magnetic Moments in Intense Magnetic Fields',Phys. Rev. (in press).Google Scholar
  6. Kubo, R.: 1965, inStatistical Mechanics, North-Holland Publ. Co., Amsterdam, pp. 278–280.Google Scholar
  7. Landau, L. D.: 1930,Z. Phys. 64, 629. (InCollected Papers of L.D. Landau, Gordon and Breach Science Publishers, New York, 1967, pp. 31–38.)Google Scholar
  8. Landau, L. D. andLifschitz, E. M.: 1958, inQuantum Mechanics, Pergamon Press Ltd., Reading, Mass., pp. 471–487.Google Scholar
  9. Landau, L. D. andLifshitz, E. M.: 1962, inThe Classical Theory of Fields, Pergamon Press, Reading, Mass., pp. 97–99.Google Scholar
  10. Manzoni, A.: 1827, inI Promessi Sposi, Milano (revised ed.: 1840). Translation available in many languages.Google Scholar
  11. Newton, T. D. andWigner, E. P.: 1949,Rev. Mod. Phys. 21, 400.Google Scholar
  12. Sakurai, J. J.: 1967, inAdvanced Quantum Mechanics, Addison-Wesley Publ. Co., Reading, Mass., pp. 117–121.Google Scholar
  13. Schwinger, J.: 1948,Phys. Rev. 73, 416.Google Scholar
  14. Ternov, I. M., Bagzov, V. G., andZhukovskii, V. Ch.: 1966,Moscow Univ. Bull. 21, No. 1, 21.Google Scholar

Copyright information

© D. Reidel Publishing Company 1969

Authors and Affiliations

  • V. Canuto
    • 1
  • H. Y. Chiu
    • 1
    • 3
  • L. Fassio-Canuto
    • 2
  1. 1.Institute for Space StudiesGoddard Space Flight Center, NASANew YorkU.S.A.
  2. 2.Dept. of PhysicsCentro de Investigacion y de Estudios AvanzadosMexico 14Mexico
  3. 3.Physics Dept. and Earth and Space Sciences Dept.State University of New YorkStony BrookU.S.A.

Personalised recommendations