Advertisement

Journal of Solution Chemistry

, Volume 21, Issue 9, pp 987–1004 | Cite as

Solubility of gases in liquids. 18. High-precision determination of Henry fugacities for argon in liquid water at 2 to 40°C

  • T. R. Rettich
  • Rubin Battino
  • Emmerich Wilhelm
Article

Abstract

The solubility of argon in pure liquid water was measured at ca. 100 kPa and from 2 to 40°C using an analytical method characterized by an imprecision of about ±0.05%. From the experimental results, Henry fugacities H 2,1 (T,P s,1 ) (also known as Henry's Law constants or Henry coefficients) at the vapor pressure P s,1 of water as well as Ostwald coefficients L 2,1 at infinite dilution were obtained. Measurements were made at roughly 0.5°C and/or 1° intervals between 2 and 8°C (region I), and at 5°C intervals above 10°C (region II). A difference plot ΔlnH 2,1 /ΔT suggests an unusual temperature dependence in region I, i.e., between 2 and 8°C. Because of this, the data were treated separately in two parts corresponding to these two regions. Our results are compared with the recent high-precision data of Krause and Benson (Henry fugacities), and with calorimetrically determined quantities (enthalpies and heat capacities of solution). Finally, experimental results are compared with values calculated via scaled particle theory.

Key words

Solubility of gases in water Henry fugacities Henry coefficients vapor pressure argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wilhelm, inCRC Critical Reviews in Analytical Chemistry, Vol. 16, (CRC Press, Boca Raton, FL) p. 129.Google Scholar
  2. 2.
    A. Ben-Naim,Hydrophobic Interactions (Plenum, New York, 1980).Google Scholar
  3. 3.
    C. Tanford,The Hydrophobic Effect. Formation of Micelles and Biological Membranes, 2nd edn., (Wiley, New York, 1980).Google Scholar
  4. 4.
    E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev. 77, 219 (1977).Google Scholar
  5. 5.
    E. Wilhelm, inInteractions of Water in Ionic and Nonionic Hydrates, H. Kleeberg. ed., (Springer Verlag, Berlin, 1987), p. 117.Google Scholar
  6. 6.
    T. R. Rettich, Y. P. Handa, R. Battino, and E. Wilhelm,J. Phys. Chem. 85, 3230 (1981).Google Scholar
  7. 7.
    T. R. Rettich, R. Battino, and E. Wilhelm,Ber. Bunsenges. Phys. Chem. 86, 1128 (1982).Google Scholar
  8. 8.
    T. R. Rettich, R., Battino, and E. Wilhelm,J. Solution Chem. 13, 335 (1984)Google Scholar
  9. 9.
    B. B. Benson, D. Krause, Jr., and M. A. Peterson,J. Solution Chem. 8, 655 (1979).Google Scholar
  10. 10.
    D. Krause, Jr. and B. B. Benson,J. Solution Chem. 18, 823 (1989).Google Scholar
  11. 11.
    B. B. Benson and D. Krause, Jr.,J. Solution Chem. 18, 803 (1989).Google Scholar
  12. 12.
    G. Olofsson, A. A. Oshodj E. Qvarnström, and I. Wadsö,J. Chem. Thermodyn. 16, 1041 (1984).Google Scholar
  13. 13.
    S. F. Dec and S. J. Gill,J. Solution Chem. 14, 417 (1985).Google Scholar
  14. 14.
    D. R. Biggerstaff, D. E. White, and R. H. Wood,J. Phys. Chem. 89, 4378 (1985).Google Scholar
  15. 15.
    E. Wilhelm,Pure Appl. Chem. 57, 303 (1985).Google Scholar
  16. 16.
    E. Wilhelm,Fluid Phase Equil. 27, 233 (1986).Google Scholar
  17. 17.
    H. Reiss,Adv. Chem. Phys. 9, 1 (1965).Google Scholar
  18. 18.
    R. Pierotti,J. Phys. Chem. 67, 1840 (1963).Google Scholar
  19. 19.
    R. Pierotti,J. Phys. Chem. 69, 281 (1965).Google Scholar
  20. 20.
    E. Wilhelm and R. Battino,J. Chem. Thermodyn. 3, 379 (1971).Google Scholar
  21. 21.
    R. Pierotti,Chem. Rev. 76, 717 (1976).Google Scholar
  22. 22.
    E. Wilhelm and R. Battino,J. Chem. Phys. 55, 4012 (1971).Google Scholar
  23. 23.
    E. Wilhelm,J. Chem. Phys. 58, 3558 (1973).Google Scholar
  24. 24.
    E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).Google Scholar
  25. 25.
    P. D. Bolton,J. Chem. Educ. 47, 638 (1970).Google Scholar
  26. 26.
    R. F. Weiss,Deep-Sea Res. 17, 721 (1970).Google Scholar
  27. 27.
    B. B. Benson and D. Krause,J. Chem. Phys. 64, 689 (1976).Google Scholar
  28. 28.
    R. Battino, M. Banzhof, M. Bogan, and E. Wilhelm,Anal. Chem. 43, 806 (1971).Google Scholar
  29. 29.
    M. L. McGlashan,J. Chem. Thermodyn. 22, 653 (1990).Google Scholar
  30. 30.
    IUPAC,Pure Appl. Chem. 58, 1677 (1986).Google Scholar
  31. 31.
    M. L. McGlashan,Pure Appl. Chem. 51, 1 (1979).Google Scholar
  32. 32.
    G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).Google Scholar
  33. 33.
    J. P. O'Connell, Ph.D. Thesis, University of California, Berkeley, California (1967).Google Scholar
  34. 34.
    J. H. Dymond and E. B. Smith,The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford, 1980).Google Scholar
  35. 35.
    C. Tsonopoulos,Adv. Chem. Ser. 182, 143 (1979).Google Scholar
  36. 36.
    R. C. Reid, J. M. Prausnitz, and B. E. Poling,The Properties of Gases and Liquids, 4th edn., (McGraw-Hill, New York, 1987).Google Scholar
  37. 37.
    D. Ambrose and I. J. Lawrenson,J. Chem. Thermodyn. 4, 755 (1972).Google Scholar
  38. 38.
    T. Enns, P. F. Scholander, and E. D. Bradstreet,J. Phys. Chem. 69, 369 (1965).Google Scholar
  39. 39.
    E. W. Tiepel and K. E. Gubbins,J. Phys. Chem. 76, 3044 (1972).Google Scholar
  40. 40.
    J. C. Moore, R. Battino, T. R. Rettich, and Y. P. Handa,J. Chem. Eng. Data 27, 22 (1982).Google Scholar
  41. 41.
    N. Bignell,J. Phys. Chem. 88, 5409 (1984).Google Scholar
  42. 42.
    N. Bignell,J. Phys. Chem. 91, 1687 (1987).Google Scholar
  43. 43.
    D. R. Biggerstaff and R. H. Wood,J. Phys. Chem. 92, 1988 (1988).Google Scholar
  44. 44.
    N. Bignell,J. Phys. E. 15, 378 (1982).Google Scholar
  45. 45.
    R. Battino,Fluid Phase Equil. 15, 231 (1984).Google Scholar
  46. 46.
    E. Wilhelm, inNitrogen and Air, IUPAC Solubility Data Series, Vol. 10, R. Battino, ed., (Pergamon Press, Oxford, 1982) p. 20.Google Scholar
  47. 47.
    E. Wilhelm,Thermochim. Acta 69, 1 (1983).Google Scholar
  48. 48.
    T. J. Morrison and N. B. Johnstone,J. Chem. Soc. 3441 (1954).Google Scholar
  49. 49.
    C. E. Klots and B. B. Benson,J. Marine Res. 21, 48 (1963).Google Scholar
  50. 50.
    A. Ben-Naim and S. Baer,Trans. Faraday Soc. 59, 2735 (1963).Google Scholar
  51. 51.
    E. Douglas,J. Phys. Chem. 68, 169 (1964).Google Scholar
  52. 52.
    A. Ben-Naim,J. Phys. Chem. 69, 3245 (1965).Google Scholar
  53. 53.
    C. N. Murray and J. P. Riley,Deep-Sea Res. 17, 203 (1970).Google Scholar
  54. 54.
    R. F. Weiss,Deep-Sea Res. 17, 721 (1970).Google Scholar
  55. 55.
    E. Wilhelm,Thermochim. Acta 119, 17 (1987).Google Scholar
  56. 56.
    E. Wilhelm,Thermochim. Acta 162, 43 (1990).Google Scholar
  57. 57.
    J.-P. E. Grolier and E. Wilhelm,Pure Appl. Chem. 63, 1427 (1991).Google Scholar
  58. 58.
    R. W. Potter and M. A. Clynne,J. Solution Chem. 7, 837 (1978).Google Scholar
  59. 59.
    R. Crovetto, R. Fernandez-Prini, and M. L. Japas,J. Chem. Phys. 76, 1077 (1982).Google Scholar
  60. 60.
    E. Wilhelm and R. Battino,J. Chem. Phys. 56, 563 (1972).Google Scholar
  61. 61.
    E. Wilhelm, J. Chem. Phys.60, 3896 (1974).Google Scholar
  62. 62.
    F. Kohler, E. Wilhelm, and H. Posch,Adv. Molec. Relax. Processes 8, 195 (1976).Google Scholar
  63. 63.
    J.-P. Montfort and J. L. PerezChem. Eng. J. 16, 205 (1978).Google Scholar
  64. 64.
    S. K. Schaffer and J. M. Prausnitz,AIChE J. 27, 844 (1981).Google Scholar
  65. 65.
    G. Schulze and J. M. Prausnitz,Ind. Eng. Chem. Fundam. 20, 77 (1981).Google Scholar
  66. 66.
    T. M. Herrington and E. L. Mole,J. Chem. Soc. Faraday Trans. I 78, 213 (1982).Google Scholar
  67. 67.
    J. E. Garrod and T. M. Herrington,J. Phys. Chem. 74, 363 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • T. R. Rettich
    • 1
  • Rubin Battino
    • 2
  • Emmerich Wilhelm
    • 3
  1. 1.Department of ChemistryIllinois Wesleyan UniversityBloomington
  2. 2.Department of ChemistryWright State UniversityDayton
  3. 3.Institut für Physikalische ChemieUniversität WienWienAustria

Personalised recommendations