Advertisement

Journal of Solution Chemistry

, Volume 10, Issue 9, pp 621–630 | Cite as

Partial molar volumes of sodium chloride solutions at 200 bar, and temperatures from 175 to 350°C

  • D. F. Grant-Taylor
Article

Abstract

High precision densities of sodium chloride solutions at a constant pressure of 200 bar and temperatures between 175°C and 350°C have been measured by a mercury displacement technique. The densities have been converted to apparent molar volumes. The apparent molar volumes decrease with increasing temperature and decreasing concentration whereas the concentration effect increases with temperature. Standard partial molar volumes range from 8.0 cm3-mol−1 at 175°C to −600 cm3-mol−1 at 350°C. The results indicate the applicability of the unextended Debye-Hückel limiting law up to concentrations of 0.02 mol-kg−1.

Key words

NaCl solutions apparent molar volumes partial molar volumes densities high temperature high pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 276, 97 (1976).Google Scholar
  2. 2.
    J. L. Haas,Am. J. Sci. 269, 489 (1970).Google Scholar
  3. 3.
    R. W. Potter, II and D. L. Brown,U.S. Geol. Surv., OFR 75-316.Google Scholar
  4. 4.
    R. Hilbert, Dissertation, Karlsruhe, 1979.Google Scholar
  5. 5.
    A. J. Ellis,J. Chem. Soc. A, 1579 (1966).Google Scholar
  6. 6.
    A. J. Ellis and I. M. McFadden,Geochim. Cosmochim Acta. 36, 413 (1972).Google Scholar
  7. 7.
    W. E. Kirst, W. M. Nagle, and J. B. Kastner,Trans. Am. Inst. Chem. Eng. 36, 371 (1940).Google Scholar
  8. 8.
    I. Odawara, I. Okada, and K. Kawamura,J. Chem. Eng. Data 22, 222 (1977).Google Scholar
  9. 9.
    G. S. Kell, G. E. McLaurin, and E. Whalley,Proc. R. Soc. London A 360, 389 (1978).Google Scholar
  10. 10.
    S. L. Hoyt, ed.,ASME Handbook: Metals Properties, (McGraw-Hill, New York, 1954).Google Scholar
  11. 11.
    E. G. F. Herington,Pure Appl. Chem. 45, 1 (1976).Google Scholar
  12. 12.
    K. E. Bett, K. E. Weale, and D. M. Newitt,Brit. J. Appl. Phys. 5, 243 (1954).Google Scholar
  13. 13.
    C.-T. Chen, R. T. Emmet, and F. J. Millero,J. Chem. Eng. Data 22, 201 (1977).Google Scholar
  14. 14.
    F. Vaslow,J. Phys. Chem. 70, 2286 (1966).Google Scholar
  15. 15.
    G. Perron, J. L. Fortier, and J. E. Desnoyers,J. Chem. Thermodyn. 7, 1177 (1975).Google Scholar
  16. 16.
    F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff,J. Phys. Chem. 78, 1636 (1974).Google Scholar
  17. 17.
    H. A. Pray, C. E. Schweickert, and B. H. Minich,Ind. and Eng. Chem. 44, 1146 (1952).Google Scholar
  18. 18.
    T. M. Seward, personal communication (1979).Google Scholar
  19. 19.
    A. J. Ellis and R. M. Golding,Am. J. Sci. 261, 47 (1963).Google Scholar
  20. 20.
    V. I. Zarembo and M. K. Federov,Russian J. Appl. Chem. 48, 1949 (1975).Google Scholar
  21. 21.
    G. G. Lemmlein and P. V. Klevtsov,Geochemistry 2, 148 (1961).Google Scholar
  22. 22.
    A. M. Rowe and J. C. S. Chou,J. Chem. Eng. Data 15, 61 (1970).Google Scholar
  23. 23.
    H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 274, 1089 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • D. F. Grant-Taylor
    • 1
  1. 1.Chemistry DivisionDepartment of Scientific and Industrial ResearchPetoneNew Zealand

Personalised recommendations