Journal of Solution Chemistry

, Volume 20, Issue 7, pp 643–668 | Cite as

Structure determination of zinc iodide complexes formed in aqueous solution

  • Hisanobu Wakita
  • Georg Johansson
  • Magnus Sandström
  • Peter L. Goggin
  • Hitoshi Ohtaki
Article

Abstract

Structures of the complexes formed in aqueous solutions between zinc(II) and iodide ions have been determined from large-angle X-ray scattering, Raman and far-IR measurements. The coordination in the hydrated Zn2+ hexaaqua ion and the first iodide complex, [ZnI]+, is octahedral, but is changed into tetrahedral in the higher complexes, [ZnI2(H2O)2], [ZnI3(H2O)] and [ZnI4]2−. The Zn-I bond length is 2.635(4)Å in the [ZnI4]2− ion and slightly shorter, 2.592(6)Å, in the two lower tetrahedral complexes. In the octahedral [ZnI(H2O)5]+ complex the Zn-I bond length is 2.90(1)Å. The Zn-O bonding distances in the complexes are approximately the same as that in the hydrated Zn2+ ion, 2.10(1)Å.

Key words

Large angle X-ray diffraction Raman spectra far-IR spectra structure of zinc(II) iodide complexes hydration of zinc(II) ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Goggin, G. Johansson, M. Maeda, and H. Wakita,Acta Chem. Scand. Ser. A 38, 625 (1984).Google Scholar
  2. 2.
    E. Kálmán, I. Serke, G. Pálinkás, G. Johansson, G. Kabisch, M. Meada, and H. Ohtaki,Z. Naturforsch. 38a, 225 (1983).Google Scholar
  3. 3.
    L. G. Sillén and A. E. Martell,Stability Constants of Metal-Ion Complexes, Special Publ. Nos. 17 and 25 (The Chemical Society, London 1964 and 1971); E. Högfeldt,Stability Constants of Metal-Ion Complexes, Part A, Inorganic Ligands, IUPAC Chemical Data Series, No. 21, (Pergamon, Oxford 1982).Google Scholar
  4. 4.
    M.-L. Delwaulle,Compt. Rend. 240, 2132 (1955).Google Scholar
  5. 5.
    G. H. Jeffrey, J. Bassett, J. Mendham, and R. C. Denney,Vogel's Textbook of Quantitative Analysis, 5th edn., (Longman, Harlow, U.K., 1989).Google Scholar
  6. 6.
    J. T. Bulmer, D. E. Irish, and L. Ödberg,Can. J. Chem. 53, 3806 (1975).Google Scholar
  7. 7.
    M. M. Yang, D. A. Crerar, and D. E. Irish,J. Solution Chem. 17, 751 (1988).Google Scholar
  8. 8.
    J. W. Macklin and R. A. Plane,Inorg. Chem. 9, 821 (1970).Google Scholar
  9. 9.
    G. Johansson and M. Sandström,Chem. Scr. 4, 195 (1973).Google Scholar
  10. 10.
    Y. Tamura, T. Yamaguchi, I. Okada, and H. Ohtaki,Z. Naturforsch. 42a, 367 (1987).Google Scholar
  11. 11.
    H. Follner and B. Brehler,Acta Crystallogr. B. 26, 1679 (1970).Google Scholar
  12. 12.
    S. Ahrland, L. Kullberg, and R. Portanova,Acta Chem. Scand. Ser. A32, 251 (1978).Google Scholar
  13. 13.
    K. Hasebe, T. Asahi, and K. Gesi,Acta Crystallogr. C 46, 218 (1990).Google Scholar
  14. 14.
    R. Holinsky and B. Brehler,Acta Crystallogr. B 26, 1915 (1970).Google Scholar
  15. 15.
    H. Ohtaki, T. Yamaguchi, and M. Maeda,Bull. Chem. Soc. Jpn. 49, 701 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Hisanobu Wakita
    • 1
  • Georg Johansson
    • 2
  • Magnus Sandström
    • 1
    • 3
  • Peter L. Goggin
    • 4
  • Hitoshi Ohtaki
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceFukuoka UniversityFukuokaJapan
  2. 2.Coordination Chemistry LaboratoriesInstitute for Molecular ScienceMyodaijiJapan
  3. 3.Department of Inorganic ChemistryRoyal Institute of TechnologyStockholmSweden
  4. 4.School of ChemistryThe UniversityBristolU.K.

Personalised recommendations