Oecologia

, Volume 91, Issue 4, pp 493–499

Comparative genet survival after fire in woody Mediterranean species

  • Luis López-Soria
  • Carles Castell
Original Papers

Summary

Using data from three fires in northeastern Spain, we tested a condition necessary to support the idea that fire has been a factor in the evolution of the resprouting habit: populations of all resprouting species within a community should show high levels of genet survival after fires and show a low coefficient of variation. Species with high mean survival values were:Quercus ilex L.,Phillyrea latifolia L., andViburnum tinus L., with 88, 86 and 83% survival respectively; these groups had resprouts emerging from rootcrowns. Then followedArbutus unedo L. (75%),Pistacia lentiscus L. (73%),Erica arborea L. (77%),Erica multiflora L. (57%) andJuniperus oxycedrus L. (55%). This last group had resprouts from lignotubers or burls. These two groups also differed in the variability around the mean: the first showed a lower coefficient of variation, 6–12, and the second ranged from 19 to 26. Slope exposure had no significant influence on the process of resprouting, but soil depth did, with precipitation as a covariate. In the shallow soil category, the difference in genet survival between southern and northern exposures was 14% (71% vs. 57%); while the difference in the deep soil category was low, 5% (87% vs. 82%). There was no significant interaction. The component of variance for soils was larger than that for species-specific effects; substantial overlap of the within-species variance indicated that species responded as if they were a single hypothetical population, in which most of the variation in chances of survival was due to the soil conditions. The possession of the resprouting habit did not ensure a high performance. Hence, we find weak support for fire as a factor in the evolution of the resprouting habit.

Key words

Regenerative types Fire-adapted trait Resilience Evolutionary convergence Mediterranean climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almera DJ (1907) Flora pliocenica de los alrededores de Barcelona. Mem R Acad Cienc Artes Barcelona 3: 321–335Google Scholar
  2. Axelrod DI (1973) History of the Mediterranean Ecosystems in California. In: di Castri F, Mooney HA (eds) Mediterranean Type Ecosystems. Chapman & Hall, New York, pp 225–277Google Scholar
  3. Axelrod D (1981) Holocene climatic changes in relation to vegetation disjunction and speciation. Am Nat 117: 847–870CrossRefGoogle Scholar
  4. Axelrod D (1989) Age and Origin of Chaparral. In: Keeley SC (ed) The California Chaparral. Paradigms Reexamined. Natural History Museum of Los Angeles, Los Angeles, USA, pp 7–19Google Scholar
  5. Barnosky CW (1987) Response of vegetation to climatic changes of different duration in the late Neogene. Trends Ecol Evol 2: 247–250CrossRefGoogle Scholar
  6. Barthélémy D, Edelin C, Hallé F (1989) Some architectural aspects of tree ageing. Ann Sci For 46: 194–198Google Scholar
  7. Bauer EM (1980) Los Montes de España en la Historia. Servicio de Publicaciones Agrarias, Ministerio de Agricultura, MadridGoogle Scholar
  8. Bell DT, McCaw WL, Burrows ND (1989) Influence of Fire on Jarrah Forest Vegetation. In: Dell B et al. (eds) The Jarrah Forest. Kluwer Academic Publishers, Dordrecht, pp 203–215Google Scholar
  9. Bertoldi R, Rio D, Thunell R (1989) Pliocene-Pleistocene vegetational and climatic evolution of the south-central Mediterranean. Palaeogeog, Palaeoclimatol, Palaeoecol 72: 263–275Google Scholar
  10. Biswell HH (1974) Effects of fire on Chaparral. In: Kozlowski TT, Ahlgren CE (eds) Fire and Ecosystems Academic Press, New York, pp 321–364Google Scholar
  11. Braun-Blanquet J (1937) Sur l'origen des éléments de la flore méditerranéenne. Station International de Géobotanique et Alpine, Montpellier, Communication No 56: 8–31Google Scholar
  12. Carpenter FL, Recher HF (1979) Pollination, reproduction, and fire. Am Nat 113: 871–879CrossRefGoogle Scholar
  13. Clark JS, Merkt J, Muller H (1989) Post-Glacial Fire, Vegetation, and Human History on the Northern Alpine Forelands, South-Western Germany. J Ecol 77: 897–925Google Scholar
  14. Cody M, Mooney HL (1978) Convergence versus non convergence in Mediterranean climate ecosystems. Annu Rev Ecol Syst 9: 265–321CrossRefGoogle Scholar
  15. Cox DR (1958) Planning of Experiments. John Wiley & Sons, New YorkGoogle Scholar
  16. DeSouza J, Silka PA, Davis SD (1986) Comparative physiology of burned and unburnedRhus laurina after chaparral wildfire. Oecologia 71: 63–68CrossRefGoogle Scholar
  17. Edelin C (1986) Strategie de reiteration et edification de la cime chez les coniferes. Nat Monspel (Colloque International sur l'Arbre): 139–158Google Scholar
  18. Endler JA (1986) Natural Selection in the Wild. Princeton University Press, New JerseyGoogle Scholar
  19. Folch R (1984) La vegetació dels Paisos Catalans. Ketres, BarcelonaGoogle Scholar
  20. Gagnon J, Roth JM, Carrol M, Hofman R, Haycock KA, Plamondon J, Feldman Jr DS, Simpson (1989) SuperAnova: Accessible general linear modeling. Abacus Concept, CaliforniaGoogle Scholar
  21. Gill AM (1981) Fire adaptive traits of vascular plants. Conference: Fire Regimes and Ecosystem Properties, USDA Forest Service General Technical Report WO-26: 208–230Google Scholar
  22. Gill DS, Mahall BE (1986) Quantitative phenology and water relations of an evergreen and a deciduous chaparral shrub. Ecol Monogr 56: 127–143Google Scholar
  23. Good R (1964) The geography of the flowering plants. Longman, LondonGoogle Scholar
  24. Gould SJ (1982) The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. In: Milkman R (ed) Perspectives on evolution. Sinauer Associates, MA, pp 83–104Google Scholar
  25. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8: 4–15Google Scholar
  26. Gregor H-J (1990) Contributions to the late Neogene and early Quaternary floral history of the Mediterranean. Rev Palaeobot Palynol 62: 309–338Google Scholar
  27. Hanes TL (1970) Succession after fire in the chaparral of southern California. Ecol Monogr 41: 27–52Google Scholar
  28. Hellmers H, Horton JS, Jurhen G, O'Keefe J (1955) Root systems of some chaparral plants in southern California. Ecology 36: 667–678Google Scholar
  29. Herrera J (1984) Vegetación del Valle de Guadahornillos (Sierra de Cazorla, Jaén). Stud Oecol 5: 77–96Google Scholar
  30. Horowitz A (1989) Continuous pollen diagrams for the last 3.5 m.y. from Israel, vegetation, climate and correlation with the oxygen isotope record. Palaeogeog, Palaeoclimatol, Palaeoecol 72: 63–78Google Scholar
  31. James S (1984) Lignotubers and burls—Their structure, function and ecological significance in Mediterranean ecosystems. Bot Rev 50: 225–266Google Scholar
  32. Keeley JE (1977) Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and nonsprouting chaparral shrubs. Ecology 58: 820–829Google Scholar
  33. Keeley JE (1978) Reproductive Cycles and Fire Regimes. In: Mooney HA, Bonnicksen TM, Christensen NL, Lotan JE, Reiners WA (eds) Proceedings of the conference on Fire Regimes and Ecosystem Properties. Honolulu, Hawaii. USDA Forest Service General Technical Report WO 26, pp 231–277Google Scholar
  34. Keeley JE (1986) Resilience of Mediterranean Shrub Communities to Fires. Dell B, Hopkins AJM, Lamont BB (eds) Resilience in Mediterranean-type Ecosystem. Dr W Junk Publishers, Dordrecht, pp 95–112Google Scholar
  35. Keeley JE, Keeley SC (1977) Energy allocation patterns of sprouting and nonsprouting species ofArctostaphylos in the California chaparral. Am Midl Nat 98: 1–10Google Scholar
  36. Keeley IE, Keeley SC (1981) Post-fire regeneration of southern California chaparral. Am J Bot 68: 524–530Google Scholar
  37. Keeley J, Zedler P (1978) Reproduction of chaparral shrubs after fire: A comparison of sprouting and seeding strategies. Am Midl Nat 99: 142–161Google Scholar
  38. Keeley SC (ed) (1989) The California Chaparral. Paradigms Reexamined. Natural History Museum of Los Angeles, Los AngelesGoogle Scholar
  39. Kruger FJ (1983) Plant Community Diversity and Dynamics in Relation to Fire. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-Type Ecosystems. The Role of Nutrients. Springer-Verlag, Berlin Heidelberg New York, pp 446–472Google Scholar
  40. Kummerow JD, Jow W (1977) Root systems of chaparral shrubs. Oecologia 29: 163–177Google Scholar
  41. Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot Rev 48: 597–689Google Scholar
  42. Mabberley DJ (1987) The Plant-Book A Portable Dictionary of the Higher Plants. Cambridge University Press, CambridgeGoogle Scholar
  43. Martin HA (1990) Tertiary climate and phytogeography in southeastern Australia. Rev Palcobot Palynol 65: 47–55Google Scholar
  44. Mesléard F, Lepart J (1989) Continuous basal sprouting from a lignotuber,Arbutus unedo andErica arborea L, as woody Mediterrancan examples. Oecologia 80: 127–131CrossRefGoogle Scholar
  45. Mills JN (1986) Herbivores and early postfire succession in southern California chaparral. Ecology 67: 1637–1650Google Scholar
  46. Minnich RA (1989) Chaparral Fire History in San Diego County and Adjacent Northern Baja California. An Evaluation of Natural Fire Regimes and the Effects of Suppression Management. In: Keeley SC (ed) The California Chaparral. Paradigms Reexamined. Natural History Museum of Los Angeles, Los Angeles, pp 37–47Google Scholar
  47. Mooney HA, Dunn EL (1970) Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution 24: 292–303Google Scholar
  48. Mooney HA, Hoobs RJ (1986) Resilience at the individual plant level. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience in Mediterranean-type Ecosystems. Dr W Junk Publishers, Dordrecht, pp 65–82Google Scholar
  49. Mutch RW (1970) Wildland fires and ecosystems- a hypothesis Ecology 51: 1046–1051Google Scholar
  50. Naveh Z (1974) Effect of Fire in the Mediterranean Region. In: Kozlowski TT, Ahlgren CE (eds) Fire and Ecosystems. Academic Press, New York, pp: 401–434Google Scholar
  51. Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio 29: 199–208Google Scholar
  52. Naveh Z (1990) Fire in the Mediterranean—a Landscape Ecological Perspective. In: Goldammer JG, Jenkins MJ (eds) Fire in Ecosystems Dynamics. Proceedings of the Third International Symposium on Fire Ecology, SPB Academic Publishing, The Hague, pp 1–20Google Scholar
  53. Oldeman RAA (1974) L'architecture de la foret Guayanaise. (Memoire No. 73) ORSTROM, Paris.Google Scholar
  54. Owen-Smith N (1987) Pleistocene extinctions, the pivotal role of megaherbivores Paleobiology 13: 351–362Google Scholar
  55. Parker J (1969) Further studies of drought resistance in woody plants. Bot Rev 35: 317–371Google Scholar
  56. Plumb TR (1961) Sprouting of chaparral by December after a wildfire in July. U.S. Forest Service Pacific Southwest Forest and Range Experimental Station Technical Paper 57Google Scholar
  57. Pons A, Quézel P (1985) The History of the Flora and Vegetation and Past and Present Human Disturbance in the Mediterranean Region. In: Gómez-Campo C (ed) Plant Conservation in the Mediterranean Area, Dr W Junk Publishers, Dordrecht, pp 25–43Google Scholar
  58. Prieto F (1989) Incendios forestales. Ideas para una interpretación. In: Ortega C (ed) El libro rojo de los bosques españoles. Adena-WWF, Madrid, pp 211–236Google Scholar
  59. Raven P (1973) The evolution of Mediterranean Floras. In: di Castri F, Mooney HA (eds) Mediterranean Type Ecosystems. Chapman & Hall, New York, pp 225–277Google Scholar
  60. Sanz de Siria A (1987) Datos para el conocimiento de las floras pliocénicas de Cataluña. Paleontologia i Evolució 21: 295–303Google Scholar
  61. Snedecor GW, Cochran WG (1967) Statistical Methods, 6 edn. Iowa State University Press, AmesGoogle Scholar
  62. Steel RGD, Torrie J (1981) Principles and procedures of Statistics. A biometrical Approach, 2-nd edn. McGraw-Hill, LondonGoogle Scholar
  63. Stohlgren TJ, Parsons DJ, Rundel PW (1984) Population structure ofAdenostoma fasciculatum in mature stands of chamise chaparral in the southern Sierra Nevada, California. Oecologia 64: 87–91CrossRefGoogle Scholar
  64. Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307: 429–432CrossRefGoogle Scholar
  65. Takhtajan A (1969) Flowering plants Origin and dispersal. Oliver & Boyd, EdinburghGoogle Scholar
  66. Trabaud L (1981) Effects of Past and Present Fire on the Vegetation of the French Mediterranean Region. In: Conrad CE, Oechel WC (eds) Symposium on Dynamics and Management of Mediterranean-type Ecosystems. San Diego, California, pp 450–457Google Scholar
  67. Trabaud L (1987) Fire and survival traits of plants. In: Trabaud L (ed) The role of fire in ecological systems. SPB Academic Publishing, The Hague, pp 65–8SGoogle Scholar
  68. Velitzelos E, Gregor H-J (1990) Some aspects of the Neogene floral history in Greece. Rev Palaeobot Palynol 62: 291–307Google Scholar
  69. Walter H, Breckle S (1985) Ecological Systems of the Geosphere. 1, Ecological Principles in Global Perspective. Springer, New YorkGoogle Scholar
  70. Wells PV (1969) The relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. Evolution 23: 264–267Google Scholar
  71. Westman WE, O'Leary JF (1986) Measures of resilience, the responses of coastal sage scrub to fire. Vegetatio 65: 179–189CrossRefGoogle Scholar
  72. Williamson BG, Black EM (1981) High temperature of forest fires under pines as a selective advantage over oaks. Nature 293: 643–644Google Scholar
  73. Wilkinson L (1986) SYSTAT, The system for statistics. SYSTAT Inc, EvanstonGoogle Scholar
  74. Zammit Ch (1988) Dynamics of resprouting in the lignotuberous shrubBanksia oblongifolia. Aust J Ecol 13: 311–320Google Scholar
  75. Zedler PH, Gautier CL, McMaster GS (1983) Vegetation changes in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64: 809–818Google Scholar
  76. Zedler P, Zammit CA (1989) A population-based critique of concepts of change in the Chaparral. In: Keeley SC (ed) The California Chaparral. Paradigms Reexamined. Natural History Museum of Los Angeles, Los Angeles, pp 73–83Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Luis López-Soria
    • 1
  • Carles Castell
    • 2
  1. 1.Department de Biologia Animal, de Biologia Vegetal i d'EcologiaUniversitat Autònoma de BarcelonaBellaterra BarcelonaSpain
  2. 2.Centre de Recerca Ecològica i Aplicacions Forestals, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterra BarcelonaSpain

Personalised recommendations