Journal of Solution Chemistry

, Volume 11, Issue 5, pp 325–338 | Cite as

Enthalpies of solution, partial molal heat capacities and apparent molal volumes of sugars and polyols in water

  • R. V. Jasra
  • J. C. Ahluwalia
Article

Abstract

Integral enthalpies of solution of some sugars and polyols in water at low concentrations have been determined calorimetrically at 25 and 35°C. These data have been used to derive heat capacities of solution ΔC°p at 30°C. Partial molal heat capacities C°p,2 have been obtained by combining ΔC°p with Cp,2*, the heat capacity of pure solid compounds. Apparent molal volumes have been obtained from density data. The sugars as well as polyols show significantly high positive ΔC°p and C°p,2 values. The results have been explained in terms of a specific hydration model. The effect of substitution of-OH by glycosidic-OCH3 and of-CHOH by deoxy-CH2 are also discussed.

Key words

Enthalpy of solution partial molal heat capacity density apparent molal volume sugars polyols specific hydration hydrophobic hydration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Philipp, W. Bock, and F. Schierbaum,J. Polymer Sci. Polymer Symposium,66, 83 (1979).Google Scholar
  2. 2.
    D. A. Rees,Int. Rev. of Science, Biochemistry Series 5, 1 (1975).Google Scholar
  3. 3.
    A. Suggett,J. Solution Chem. 5, 33 (1976) and references therein.Google Scholar
  4. 4.
    F. Franks, J. R. Ravenhill, and D. S. Reid,J. Solution Chem. 1, 3 (1972).Google Scholar
  5. 5.
    T. S. Sarma, R. K. Mohanty, and J. C. Ahluwalia,Trans. Faraday Soc. 65, 2333 (1969).Google Scholar
  6. 6.
    V. B. Parker,Thermal Properties of Aqueous Un-univalent Electrolytes, NSRDS. NBS-2, Washington D.C. (1965).Google Scholar
  7. 7.
    S. Gunn,J. Phys. Chem. 69, 2902 (1965).Google Scholar
  8. 8.
    G. S. Kell,J. Chem. Eng. Data 15, 119 (1970).Google Scholar
  9. 9.
    H. S. Isbell and W. Pigmann,Adv. in Carbohydrate Chem. 24, 14 (1969);23, 11 (1968).Google Scholar
  10. 10.
    J. M. Sturtevant,J. Phys. Chem. 45, 127 (1941).Google Scholar
  11. 11.
    M. A. Kabayama, D. Patterson, and L. Piche,Can. J. Chem. 36, 557, 563 (1958).Google Scholar
  12. 12.
    J. B. Taylor and J. S. Rowlinson,Trans. Faraday Soc. 51, 1183 (1955).Google Scholar
  13. 13.
    G. S. Parks and K. E. Manchester,J. Am. Chem. Soc. 74, 3435 (1952).Google Scholar
  14. 14.
    Int. Critical Tables of Numerical Data, Phys., Chem., and Technology, Vol. V, E. W. Washburn, ed. (Mcgraw-Hill, New York, 1929), p. 102.Google Scholar
  15. 15.
    J. Timmerman,Physico-Chemical Constants of the Pure Organic Compounds, (Elsevier, 1950).Google Scholar
  16. 16.
    CRC Handbook of Chemistry and Physics, 59th edition, R. C. Weast, ed. (Chemical Rubber Company, Cleveland, 1978–79).Google Scholar
  17. 17.
    F. Kawaizumi, N. Nishio, H. Nomura, and Y. Miyahara,J. Chem. Thermodyn. 13, 89 (1981).Google Scholar
  18. 18.
    G. Dipaola and B. Belleau,Can. J. Chem. 55, 3825 (1977).Google Scholar
  19. 19.
    O. D. Bonner and P. J. Cerutti,J. Chem. Thermodyn. 8, 105 (1976).Google Scholar
  20. 20.
    C. Jolicoeur and G. Lacroix,Can. J. Chem. 54, 624 (1976).Google Scholar
  21. 21.
    J. T. Edsall,J. Am. Chem. Soc. 57, 1506 (1935).Google Scholar
  22. 22.
    F. Shahidi, P. G. Farrell, and J. T. Edwards,J. Solution Chem. 5, 807 (1976).Google Scholar
  23. 23.
    L. G. Longsworth,Electrochemistry in Biology and Medicine, T. Shedlovsky, ed. (Wiley, New York, 1955), chap. 12.Google Scholar
  24. 24.
    J. L. Neal and D. A. I. Goring,Can. J. Chem. 48, 3745 (1970).Google Scholar
  25. 25.
    H. Hoiland and E. Vikingstad,Acta. Chemica. Scand. A 30, 182 (1976).Google Scholar
  26. 26.
    J. T. Edward, P. G. Farrell, and F. Shahidi,J. Chem. Soc. Faraday 1,73, 705 (1977).Google Scholar
  27. 27.
    F. Franks, M. A. J. Quickenden, D. S. Reid, and B. Watson,Trans. Faraday. Soc. 66, 582 (1970).Google Scholar
  28. 28.
    N. Nichols, R. Skold, C. Spink, J. Suurkuusk, and I. Wadso,J. Chem. Thermodyn. 8, 1081 (1976).Google Scholar
  29. 29.
    J. P. Guthrie,Can. J. Chem. 55, 3700 (1977).Google Scholar
  30. 30.
    J. Konicek and I. Wadso,Acta. Chem. Scand. 25, 1571 (1971).Google Scholar
  31. 31.
    F. Franks, D. S. Reid, and A. Suggett,J. Solution Chem. 2, 99 (1973).Google Scholar
  32. 32.
    K. P. Prasad and J. C. Ahluwalia,J. Solution Chem. 5, 491 (1976).Google Scholar
  33. 33.
    M. C. R. Symon, J. A. Benbow, and J. M. Harvey,Carbohydr. Res. 83, 9 (1980).Google Scholar
  34. 34.
    M. J. Tait, A. Suggett, F. Franks, S. Ablett, and P. A. Quickenden,J. Solution Chem. 1, 131 (1972).Google Scholar
  35. 35.
    D. T. Warner,Nature 196, 1055 (1962).Google Scholar
  36. 36.
    A. H. Narten, M. D. Danford, and H. A. Levy,Disc. Faraday Soc. 43, 97 (1967).Google Scholar
  37. 37.
    K. Kusano, J. Suurkuusk, and I. Wadso,J. Chem. Thermodyn. 5, 757 (1973).Google Scholar
  38. 38.
    S. A. Angyl and R. Lefur,Carbohydr. Res. 84, 201 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • R. V. Jasra
    • 1
  • J. C. Ahluwalia
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations