Journal of Solution Chemistry

, Volume 17, Issue 11, pp 1015–1041 | Cite as

Thermodynamic properties and conductivities of some dodecylsurfactants in water

  • R. De Lisi
  • E. Fisicaro
  • S. Milioto


Densities, heat capacities, enthalpies of dilution, osmotic coefficients and conductivities are reported for dodecylamine hydrochloride, dodecyldimethylammonium and dodecyltrimethylammonium chloride in water over a wide range of concentration. The last two properties were also measured for dodecyltrimethylammonium bromide. From the thermodynamic data partial molar volumes, heat capacities and relative enthalpies and nonideal free energies and entropies were derived as a function of the surfactant concentration. The cmc's and degree of counterion dissociation were also calculated from the transport properties. It is shown that the trends of volumes, enthalpies, free energies and entropies are quite regular whereas heat capacities present maxima and minima at concentrations which depend on the nature of surfactants. Corresponding changes were observed in the osmotic coefficients and specific conductivities. The thermodynamic functions of micellization were evaluated on the basis of the pseudo-phase transition model. Finally, the effects of the introduction of methyl groups in the hydrophilic moiety of the surfactant and of the nature of the counterion on the thermodynamic properties of monomers and micelles are examined.

Key words

Dodecylamine hydrochloride dodecyldimethyl-ammonium chloride dodecyltrimethylammonium chloride dodecyltrimethylammonium bromide conductivities densities heat capacities enthalpies of dilution osmotic coefficients activity coefficients partial molar volumes partial molar heat capacities partial molar relative enthalpies nonideal free energies nonideal entropies thermodynamics of micellization degree of counterion dissociation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. De Lisi, V. Turco Liveri, M. Castagnolo and A. Inglese,J. Solution Chem. 15, 23 (1986).Google Scholar
  2. 2.
    R. De Lisi, A. Lizzio, S. Milioto and V. Turco Liveri,J. Solution Chem. 15, 623 (1986).Google Scholar
  3. 3.
    R. De Lisi, S. Milioto and V. Turco Liveri,J. Colloid Interface Sci. 117, 64 (1987).Google Scholar
  4. 4.
    R. De Lisi, S. Milioto, M. Castagnolo and A. Inglese,J. Solution Chem. 16, 373 (1986).Google Scholar
  5. 5.
    R. De Lisi and S. Milioto,J. Solution Chem. 16, 767 (1987).Google Scholar
  6. 6.
    S. Milioto and R. De Lisi,J. Colloid Interface Sci. 123, 92 (1988).Google Scholar
  7. 7.
    R. De Lisi and S. Milioto,J. Solution Chem. 17, 245 (1988).Google Scholar
  8. 8.
    S. Milioto, D. Romancino and R. De Lisi,J. Solution Chem. 16, 943 (1987).Google Scholar
  9. 9.
    R. De Lisi, E, Fisicaro and S. Milioto,J. Solution Chem. (submitted).Google Scholar
  10. 10.
    R. Zana, S. Yiv, C. Strazielle and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).Google Scholar
  11. 11.
    D. M. Bloor, J. Gormally and E. Wynne-Jones,J. Chem. Soc., Faraday Trans. 80, 1915 (1984).Google Scholar
  12. 12.
    M. Aratono, T. Okamoto and K. Motomura,Bull. Chem. Soc. Jpn. 60, 2361 (1987).Google Scholar
  13. 13.
    G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).Google Scholar
  14. 14.
    M. F. Stimson, Am.J. Phys. 23, 614 (1955).Google Scholar
  15. 15.
    L. V. Dearden and E. M. Wooley,J. Phys. Chem. 91, 2404 (1987).Google Scholar
  16. 16.
    J. E. Lind Jr., J. J. Zwolenick, and R. M. Fuoss,J. Am. Chem. Soc. 81, 1557 (1959).Google Scholar
  17. 17.
    G. J. Janz and J. D. E. McIntyre,J. Electrochem. Soc. 108, 72 (1961).Google Scholar
  18. 18.
    J. E. Desnoyers, R. De Lisi, C. Ostiguy, and G. Perron, inSolution Chemistry of Surfactants, Vol. 1, K. L. Mittal ed., (Plenum Press, New York, 1979).Google Scholar
  19. 19.
    H. C. Evans,J. Chem. Soc. 579, (1956).Google Scholar
  20. 20.
    N. Nishikido,J. Colloid Interface Sci. 92, 588 (1983)Google Scholar
  21. 21.
    B. B. Owen and H. Zeldes,J. Phys. Chem. 18, 1083 (1950).Google Scholar
  22. 22.
    P. Lianos and R. Zana,J. Colloid Interface Sci. 84, 100 (1981).Google Scholar
  23. 23.
    C. Treiner,J. Colloid Interface Sci. 93, 33 (1983).Google Scholar
  24. 24.
    A. Malliaris, J. Le Moigne, J. Sturm and R. Zana,J. Phys. Chem. 89, 2709 (1985).Google Scholar
  25. 25.
    S. H. Herzfeld, M. L. Corrin, and W. D. Harkins,J. Phys. Chem. 54, 271 (1950).Google Scholar
  26. 26.
    I. V. Rao and E. Ruckenstein,J. Colloid Interf. Sci. 113, 375 (1986).Google Scholar
  27. 27.
    D. C. Robins and I. L. Thomas,J. Colloid Interface Sci. 26, 407 (1968).Google Scholar
  28. 28.
    R. B. Dorshow, C. A. Bunton, and D. F. Nicoli,J. Phys. Chem. 87, 1409 (1983).Google Scholar
  29. 29.
    E. Anacker and H. Ghose,J. Phys. Chem. 67, 1713 (1963).Google Scholar
  30. 30.
    G. Perron, N. Desrosiers, and J. E. Desnoyers, Canad.J. Chem. 54, 2163 (1979).Google Scholar
  31. 31.
    R. De Lisi, G. Perron, and J. E. Desnoyers, Canad.J. Chem. 58, 959 (1980).Google Scholar
  32. 32.
    K. M. Kale and R. Zana,J. Colloid Interface Sci. 61, 312 (1977).Google Scholar
  33. 33.
    J. E. Desnoyers, R. De Lisi, and G. Perron,Pure & Appl. Chem. 52, 433 (1980).Google Scholar
  34. 34.
    M. T. Bashford and E. M. Woolley,J. Phys. Chem. 89, 3173 (1985).Google Scholar
  35. 35.
    P. White and G. Benson,Trans. Faraday Soc. 54, 1025 (1959).Google Scholar
  36. 36.
    R. L. Berg,BERC/TPR-77/3, (Bartlesville Energy Research Center, Bartlesville, OK, 1977)Google Scholar
  37. 37.
    K. G. Gotz and K. Heckmann,J. Colloid Sci. 13, 206 (1958).Google Scholar
  38. 38.
    P. Ekwall, L. Mandell and P. Solyom,J. Colloid Interface Sci. 35, 519 (1971).Google Scholar
  39. 39.
    G. Lindblom, B. Lindman, and L. Mandell,J. Colloid Interface Sci. 42, 400 (1973).Google Scholar
  40. 40.
    P. Lianos and R. Zana,J. Colloid Interface Sci. 101, 587 (1984).Google Scholar
  41. 41.
    C. Treiner, A. K. Chattopadhyay, and R. Bury,J. Colloid Interface Sci. 104, 569 (1985).Google Scholar
  42. 42.
    F. Quirion and J. E. Desnoyers,J. Colloid Interface Sci. 112, 565 (1986).Google Scholar
  43. 43.
    R. De Lisi, S. Milioto, and R. Triolo,J. Solution Chem. (in press).Google Scholar
  44. 44.
    H. Nery, J. P. Marchal, D. Canet, and J. M. Cases,J. Colloid Interface Sci. 77, 174 (1980).Google Scholar
  45. 45.
    R. De Lisi, C. Ostiguy, G. Perron, and J.E. Desnoyers,J. Colloid Interface Sci. 71, 147 (1979).Google Scholar
  46. 46.
    N. Rajagopalan, M. Vadnere, and S. Lindebaum,J. Solution Chem. 10, 785 (1981).Google Scholar
  47. 47.
    G. Roux-Desgranges, A. H. Roux, J. P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).Google Scholar
  48. 48.
    R. De Lisi, C. Genova, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).Google Scholar
  49. 49.
    G. Roux-Desgranges, A. H. Roux, and A. Viallard,J. Chim. Phys. 82, 441 (1985).Google Scholar
  50. 50.
    T. E. Burchfield and E. M. Woolley,J. Phys. Chem. 88, 2149 (1984).Google Scholar
  51. 51.
    Y. F. Maa and S. H. Chen,J. Colloid Interface Sci. 115, 437 (1987).Google Scholar
  52. 52.
    J. E. Desnoyers, G. Caron, R. De Lisi, D. Roberts, A. H. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).Google Scholar
  53. 53.
    L. V. Dearden and E. M. Woolley,J. Phys. Chem. 91, 4123 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • R. De Lisi
    • 1
  • E. Fisicaro
    • 2
  • S. Milioto
    • 1
  1. 1.Istituto di Chimica FisicaUniversità di PalermoPalermoItaly
  2. 2.Istituto di Chimica Fisica ApplicataUniversita di ParmaParmaItaly

Personalised recommendations