Transport in Porous Media

, Volume 7, Issue 2, pp 163–185 | Cite as

Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor

  • Constantinos V. Chrysikopoulos
  • Peter K. Kitanidis
  • Paul V. Roberts


Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques.

Key words

Moment analysis sorbing solute transport spatially-periodic retardation 



amplitude of oscillation of the retardation factor


vector of wavenumbers:b=(b x ,b y ,b z ) T

\(\begin{gathered} ` \hfill \\ b \hfill \\ \end{gathered}\)

normalized vector:\(b = (b_x /l_x , b_y /l_y , b_z /l_z )_{}^T\)


liquid-phase solute concentration (solute mass/liquid volume),M/L3


solid-phase or sorbed solute concentration (solute mass/solids mass),M/M

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{C} _n\)

total liquid-phase solute mass within the nth unit element,M


hydrodynamic dispersion coefficient,L2/t


dispersion coefficient tensor




arbitrary global or local function


function of local coordinates


imaginary number unit:j=√−1


dimensionless partition or distribution coefficients


forward sorption rate coefficient,t−1


reverse sorption rate coefficient,t−1


partition of distribution coefficient (liquid volume/solids mass),L3/M


characteristic linear dimension of a unit element,L


basic vectors which define a unit element


liquid-phase local moments


continuous and discrete representation of liquid-phase global moments


outer unit vector normal to∂V0


origin of a local coordinate system


order of magnitude, origin of global coordinate system


solid-phase local moments


continuous and discrete representation of solid-phase global moments


local Cartesian coordinates,L


local position vector within a unit element


interface of a unit element


differential volume within a unit element


global Cartesian coordinates,L


discrete position vector of a general point


discrete position vector locating the origin of the nth unit element


retardation factors defined in Equations (8) and (85), respectively


faces of the unit element


infinitesimal area on∂V0


solid-phase or sorbed solute concentration (solute mass/liquid volume),M/L3

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{S} _{\text{n}}^*\)

total solid-phase solute mass within then unit element




average interstitial velocity,L/t


velocity vector


domain of a unit element


external surface of a unit element


mass of solute injected,M


function of local coordinates




Dirac delta function


Kronecker delta


porosity (liquid volume/aquifer volume),L3/L3


spectrum coefficient


spectrum coefficients,L


bulk density of the solid matrix (solids mass/aquifer volume),M/L3



function of local coordinates


null vector

an element of


vector operator (del): ∇q=[∂/∂q x ,∂/∂q y ,∂/∂q z ] T

\(\mathop {{\text{def}}}\limits_ =\)

equals by definition

for all

magnitude of a vector, Euclidean norm

〚 〛

jump in the value of a function across equivalent points on opposite faces of a unit element


i, j

direction of principal axes:i, j = x, y, z

m, n

integer summation indicies


nth unit element: {n} = {n x ,n y ,n z }

x, y, z

principal directions of a Cartesian coordinate system





indicates the solid-phase

effective global coefficient

indicates the value of a function minus its average over the volume of a unit element

complex conjugate

local equilibrium sorption

• •

first-order reversible kinetic sorption (overbar) average over the volume of a unit element


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlstrom, S. W., Foote, H. P., Arnett, R. C., Cole, C. R., and Serne, R. J., 1977, Multicomponent mass transport model: Theory and numerical implementation (discrete-parcel-random-walk version), Tech. Rep. BNWL-2127, Battelle Pacific Northwest Laboratories, Richland, WA.Google Scholar
  2. Angelakis, A. N., Kadir, T. N., and Rolston, D. E., 1987, Solutions for transport of two sorbed solutes with differing dispersion coefficients in soil,Soil Sci. Soc. Am. J. 51, 1428–1434.Google Scholar
  3. Aris, R., 1956, On the dispersion of solute in a fluid flowing through a tube,Proc. R. Soc. Lond. A 235, 67–77.Google Scholar
  4. Bahr, J. M. and Rubin, J., 1987, Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions,Water Resour. Res. 23(3), 438–452.Google Scholar
  5. Black, T. C., 1988, Concentration uncertainty for stochastic analysis of solute transport in a bounded, heterogeneous aquifer, Ph.D. dissertation, Stanford University, Stanford, CA.Google Scholar
  6. Brenner, H., 1980a, General theory of Taylor dispersion phenomena,Physicochem. Hydrodyn. 1, 91–123.Google Scholar
  7. Brenner, H., 1980b, Dispersion resulting from flow through spatially periodic porous media,Phil. Trans. R. Soc. Lond. A 297, 81–133.Google Scholar
  8. Brenner, H., 1982a, A general theory of Taylor dispersion phenomena, II, An extension,Physicochem. Hydrodyn. 3(2), 139–157.Google Scholar
  9. Brenner, H., 1982b, A general theory of Taylor dispersion phenomena, IV, Direct coupling effects,Chem. Eng. Commun. 18, 355–379.Google Scholar
  10. Brenner, H. and Adler, M., 1982, Dispersion resulting from flow through spatially periodic porous media, II, Surface and intraparticle transport,Phil. Trans. R. Soc. Lond. A 307, 149–200.Google Scholar
  11. Cederberg, G. A., Street, R. L., and Leckie, J. O., 1985, A groundwater mass transport and equilibrium chemistry model for multicomponent systems,Water Resour. Res. 21(8), 1095–1104.Google Scholar
  12. Chrysikopoulos, C. V., Kitanidis, P. K., and Roberts, P. V., 1990, Analysis of one-dimensional solute transport through porous media with spatially-variable retardation factor,Water Resour. Res. 26(3), 437–446.Google Scholar
  13. Chrysikopoulos, C. V., Kitanidis, P. K., and Roberts, P. V., 1991, Macrodispersion of sorbing solutes in heterogeneous porous formations with spatially-periodic retardation factor and velocity field, submitted toWater Resour. Res. Google Scholar
  14. Dagan, G., 1989,Flow and Transport in Porous Formations, 465pp., Springer-Verlag, Berlin.Google Scholar
  15. Dill, L. H. and Brenner, H., 1982a, A general theory of Taylor dispersion phenomena, III, Surface transport,J. Collod Interface Sci. 85(1), 101–117.Google Scholar
  16. Dill, L. H. and Brenner, H., 1982b, A general theory of Taylor dispersion phenomena, V, Time-periodic convection,Physicochem. Hydrodyn. 3(3/4), 267–292.Google Scholar
  17. Dill, L. H. and Brenner, H., 1983, Dispersion resulting from flow through spatially periodic porous media, III, Time-periodic processes,Physicochem. Hydrodyn. 4(3), 279–302.Google Scholar
  18. Durant, M. G. and Roberts, P. V., 1986, Spatial variability of organic solute sorption in the Borden aquifer, Tech. Report 303, Department of Civil Engineering, Stanford University, Stanford, CA.Google Scholar
  19. Frankel, I. and Brenner, H., 1989, On the foundations of generalized Taylor dispersion theory,J. Fluid Mech. 204, 97–119.Google Scholar
  20. Garabedian, S. P., 1987, Large-scale dispersive transport in aquifers: Field experiments and reactive transport theory, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  21. Goltz, M. N. and Roberts, P. V., 1986, Interpreting organic transport data from a field experiment using physical nonequilibrium models,J. Contam. Hydrol. 1, 77–93.Google Scholar
  22. Horn, F. J. M., 1971, Calculation of dispersion coefficients by means of moments,AIChE J. 17(3), 613–620.Google Scholar
  23. James, R. V. and Rubin, J., 1979, Applicability of the local equilibrium assumption to transport through soils of solutes aflected by ion exchange, in E. A. Jenne, (ed.),Chemical Modeling in Aqueous Systems, 914pp., American Chemical Society, Washington, DC, pp. 225–235.Google Scholar
  24. Jennings, A. A. and Kirkner, D. J., 1984, Instantaneous equilibrium approximation analysis,J. Hydraul. Eng. 110(12), 1700–1717.Google Scholar
  25. Jennings, A. A., Kirkner, D. J., and Theis, T. L., 1982, Multicomponent equilibrium chemistry in groundwater quality models,Water Resour. Res. 18(4), 1089–1096.Google Scholar
  26. Kinzelbach, W., 1988, The random walk method in pollutant transport simulation, in E. Custodioet al. (eds),Groundwater Flow and Quality Modelling, D. Reidel, Dordrecht, pp. 227–245.Google Scholar
  27. Kirkner, D. J., Theis, T. L., and Jennings, A. A., 1984, Multicomponent solute transport with sorption and solute complexation,Adv. Water Resour. 7, 120–125.Google Scholar
  28. Kitanidis, P. K., 1990, Effective hydraulic conductivity for gradually varying flow,Water Resour. Res. 26(6), 1197–1208.Google Scholar
  29. Knapp, R. B., 1989, Spatial and temporal scales of local equilibrium in dynamic fluid-rock systems,Geochim. Cosmochim. Acta,53, 1955–1964.Google Scholar
  30. Kreft, A. and Zuber, A., 1978, On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions,Chem. Eng. Sci. 33, 1471–1480.Google Scholar
  31. Liu, C. W. and Narasimhan, T. N., 1989, Redox-controlled multiple-species reactive chemical flow, 1, Model development,Water Resour. Res. 25(5), 869–882.Google Scholar
  32. Mackay, D. M., Ball, W. P., and Durant, M. G., 1986, Variability of aquifer sorption properties in a field experiment on groundwater transport of organic solutes: Methods and preliminary results,J. Contam. Hydrol. 1, 119–132.Google Scholar
  33. Mansell, R. S., Bloom, S. A., Selim, H. M., and Rhue, R. D., 1988, Simulated transport of multiple cations in soil using variable selectivity coefficients,Soil Sci. Soc. Am. J. 52, 1533–1540.Google Scholar
  34. Miller, C. T. and Weber, W. J., 1986, Sorption of hydrophobic organic pollutants in saturated soil systems.J. Contam. Hydrol. 1, 243–261.Google Scholar
  35. Miller, C. W. and Benson, L. V., 1983, Simulation of solute transport in chemically reactive heterogeneous system: Model development and application,Water Resour. Res. 19(2), 381–391.Google Scholar
  36. Nkedi-Kizza, P., Biggar, J. W., van Genuchten, M. Th., Wierenga, P. J., Selim, H. M., Davidson, J. M., and Nielsen, D. R., 1983, Modelling tritium and chloride 36 transport through an aggregated oxisol,Water Resour. Res. 19(3), 691–700.Google Scholar
  37. Parker, J. C. and Valocchi, A. J., 1986, Constraints on the validity of equilibrium and first-order kinetic transport models in structured soils,Water Resour. Res. 22(3), 399–407.Google Scholar
  38. Pickens, J. F. and Grisak, G. E., 1981, Scale-dependent dispersion in a stratified granular aquifer,Water Resour. Res. 17(4), 1191–1211.Google Scholar
  39. Roberts, P. V., Goltz, M. N., and Mackay, D. M., 1986 A natural gradient experiment on solute transport in a sand aquifer, 3, Retardation estimates and mass balances for organic solutes,Water Resour. Res. 22(13), 2047–2058.Google Scholar
  40. Shapiro, M. and Brenner, H., 1988, Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium,Chem. Eng. Sci. 43(3), 551–571.Google Scholar
  41. Smith, L. and Schwartz, F. W., 1980, Mass transport 1: A stochastic analysis of macrodispersion,Water Resour. Res. 16(2), 303–313.Google Scholar
  42. Taylor, G., 1953, Dispersion of solute matter in solvent flowing slowly through a tube,Proc. R. Soc. Lond. A 219, 186–203.Google Scholar
  43. Taylor, G., 1954, The dispersion of matter in turbulent flow through a pipe,Proc. R. Soc. Lond. A 223, 446–468.Google Scholar
  44. Valocchi, A. J., 1985, Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils,Water Resour. Res. 21(6), 808–820.Google Scholar
  45. Valocchi, A. J., 1989, Spatial moment analysis of the transport of kinetically adsorbing solutes through stratified aquifers,Water Resour. Res. 25(2), 273–279.Google Scholar
  46. Valocchi, A. J., Street, R. L., and Roberts, P. V., 1981, Transport of ion-exchanging solutes in ground-water: Chromatographic theory and field simulation,Water Resour. Res. 17(5), 1517–1527.Google Scholar
  47. van der Zee, S. E. A. T. M. and van Riemsdijk, W. H., 1987, Transport of reactive solute in spatially variable soil systems,Water Resour. Res. 23(11), 2059–2069.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Constantinos V. Chrysikopoulos
    • 1
  • Peter K. Kitanidis
    • 1
  • Paul V. Roberts
    • 1
  1. 1.Department of Civil EngineeringStanford UniversityStanfordUSA

Personalised recommendations