Advertisement

Journal of Solution Chemistry

, Volume 10, Issue 8, pp 563–595 | Cite as

Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution

  • Sergio Cabani
  • Paolo Gianni
  • Vincenzo Mollica
  • Luciano Lepori
Article

Abstract

The thermodynamic properties ΔG h o,ΔH h o, and ΔC p,h oassociated with the transfer of non-ionic organic compounds from gas to dilute aqueous solution and the limiting partial molar properties C p o ,2 and V22 of these compounds in water are described through a simple scheme of group contributions. A distinction is made between groups made only of carbon and hydrogen, and functional groups i.e. groups containing at least one atom different from carbon and hydrogen. Each group is assigned a contribution, for each property, through a least squares procedure which utilizes only molecules containing at most one functional group. Finally, for compounds containing more than one functional group, correction parameters are evaluated as the differences between the experimental values and those calculated by means of the group contributions. The different behavior of hydrophilic compared with hydrophobic groups is discussed for the various properties. A rationale for the correction parameters, i.e. for the effects of the interactions among hydrophilic groups on the thermodynamic properties, is attempted.

Key Words

Group contributions partial molar heat capacity partial molar volume free energy of hydration enthalpy of hydration dilute aqueous solutions non-electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Edward and P. G. Farrell,Can. J. Chem. 53, 2965 (1975).Google Scholar
  2. 2.
    S. Terasawa, H. Itsuki, and S. Arakawa,J. Phys. Chem. 79, 2345 (1975).Google Scholar
  3. 3.
    S. Cabani, G. Conti, and E. Matteoli,J. Chem. Soc., Faraday Trans. I 74, 2408 (1978).Google Scholar
  4. 4.
    S. Cabani and P. Gianni,J. Chem. Soc., Faraday Trans. I. 75, 1184 (1979).Google Scholar
  5. 5.
    J. Hine and P. K. Mookerjee,J. Org. Chem. 40, 292 (1975).Google Scholar
  6. 6.
    J. P. Guthrie,Can. J. Chem. 55, 3700 (1977).Google Scholar
  7. 7.
    S. W. Benson,Thermochemical Kinetics, 2nd ed. (John Wiley, New York, 1976).Google Scholar
  8. 8.
    A. Bondi,J. Phys. Chem 68, 441 (1964).Google Scholar
  9. 9.
    J. Traube,Samml. Chem. Vortz. 4, 255 (1899).Google Scholar
  10. 10. a)
    See Ref. 2; —.Google Scholar
  11. 10. b)
    C. V. Krishnan and H. L. Friedman inSolute-Solvent Interactions, J. F. Coetzee, and C. D. Ritchie, eds. (M. Dekker, New York, 1976), Vol. 2, Chap. 9;Google Scholar
  12. 10. c)
    M. H. Abraham,J. Am. Chem. Soc. 101, 5477 (1979),Google Scholar
  13. 10. d)
    A. Leo, C. Hansch, and P. Y. C. Jow,J. Med. Chem. 19, 611 (1976).Google Scholar
  14. 11. a)
    R. A. Pierotti,J. Phys. Chem. 69, 281 (1965);Chem. Rev. 76, 717 (1976);Google Scholar
  15. 11. b)
    M. Lucas and R. Bury,J. Phys. Chem. 80, 999 (1976);Google Scholar
  16. 11. c)
    F. Hirata and K. Arakawa,Bull. Chem. Soc. Japan. 46, 3367 (1973).Google Scholar
  17. 12. a)
    See Ref. 2; —.Google Scholar
  18. 12. b)
    N. Nichols, R. Skold, C. Spink, J. Suurkuusl, and I. Wadsö,J. Chem. Thermodyn. 8, 1081 (1976);Google Scholar
  19. 12. c)
    see Ref. 10b, —, p. 51;Google Scholar
  20. 12. d)
    C. Jolicoeur and G. Lacroix,Can. J. Chem. 54, 624 (1976);Google Scholar
  21. 12. e)
    H. Høiland and E. Vikingstad,Acta Chem. Scand. A30, 182 (1976).Google Scholar
  22. 13.
    S. J. Gill and I. Wadsö,Proc. Natl. Acad. Sci. USA 73, 2955 (1976).Google Scholar
  23. 14. a)
    H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945);Google Scholar
  24. 14. b)
    W. Kauzmann,Adv. Protein Chem. 14, 1 (1959);Google Scholar
  25. 14. c)
    F. Franks inMembrane Models and the Formation of Biological Membranes, L. Bolis and B. A. Pethica, eds. (North Holland Publ. Co., Amsterdam, 1969) p. 43;Google Scholar
  26. 14. d)
    M. J. Blandamer inAdv. Phys. Org. Chem., V. Gold, ed.,14 248 (1977);Google Scholar
  27. 14. e)
    F. Franks inWater:A Comprehensive Treatise, F. Franks, ed. (Plenum Press, New York, 1973), Vol. 1, Chap. 1, pp. 8, 9, 13, 28; Vol. 2, Chap. 5, p. 328;Google Scholar
  28. 14. f)
    C. Tanford,The Hydrophobic Effect. Formation of Micelles and Biological Membranes, (J. Wiley, New York, 1973);Google Scholar
  29. 14. g)
    H. Devoe,J. Am. Chem. Soc. 98, 1724 (1976).Google Scholar
  30. 15.
    F. Shahidi and P. G. Farrell,J. Solution Chem. 7, 549 (1978).Google Scholar

References

  1. 1.
    A. Aihara,Bull. Chem. Soc. Japan 32, 1242 (1959).Google Scholar
  2. 2.
    D. M. Alexander,J. Chem. Eng. Data 4, 252 (1959).Google Scholar
  3. 3.
    D. M. Alexander and D. J. T. Hill,Aust. J. Chem. 22, 347 (1969).Google Scholar
  4. 4.
    D. M. Alexander, D. J. T. Hill, and R. L. White,Aust. J. Chem. 24, 1143 (1971).Google Scholar
  5. 5.
    D. Ambrose, J. H. Ellender, C. H. S. Sprake, and R. Townsend,J. Chem. Thermodyn. 7, 453 (1975).Google Scholar
  6. 6.
    R. J. L. Andon, J. D. Cox, and E. F. G. Herington,J. Chem. Soc. 3188 (1954).Google Scholar
  7. 7.
    P. Arnaud, L. Avedikian, and J. P. Morel,J. Chim, Phys. 1, 45 (1972).Google Scholar
  8. 8.
    E. M. Arnett, W. B. Kover, and J. V. Carter,J. Am. Chem. Soc. 91, 4028 (1969).Google Scholar
  9. 9.
    E. M. Arnett, J. J. Burke, J. V. Carter, and C. F. Douty,J. Am. Chem. Soc. 94, 7837 (1972).Google Scholar
  10. 10.
    E. M. Arnett, L. E. Small, D. Oancea, and D. Johnston,J. Am. Chem. Soc. 98, 7346 (1976).Google Scholar
  11. 11.
    E. M. Arnett, B. Chawla, L. Bell, M. Taagepera, W. J. Hehre, and R. W. Taft,J. Am. Chem. Soc. 99, 5729 (1977).Google Scholar
  12. 12.
    E. M. Arnett and B. Chawla,J. Am. Chem. Soc. 101, 7141 (1979).Google Scholar
  13. 13.
    P. Assarsson and F. R. Eirich,J. Phys. Chem. 72, 2710 (1968).Google Scholar
  14. 14.
    S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Hauger, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Waish,Chem. Rev. 69, 279 (1969).Google Scholar
  15. 15.
    S. W. Benson,Thermochemical Kinetics, 2nd Ed., (Wiley, New York, 1976).Google Scholar
  16. 16.
    S. Bergström and G. Olofsson,J. Solution Chem. 4, 535 (1975).Google Scholar
  17. 17.
    L. Boje and A. Hvidt,J. Chem. Thermodyn. 3, 663 (1971).Google Scholar
  18. 18.
    L. Boje and A. Hvidt,Biopolymers 11, 2357 (1972).Google Scholar
  19. 19.
    A. Bondi,J. Phys. Chem. 68, 441 (1964).Google Scholar
  20. 20.
    A. Bondi,Physical Properties of Molecular Crystals, Liquids, and Gases (Wiley, New York, 1968).Google Scholar
  21. 21.
    O. D. Bonner and P. J. Cerutti,J. Chem. Thermodyn. 8, 105 (1976).Google Scholar
  22. 22.
    T. Boublik, V. Fried, and E. Hala,The Vapour Pressure of Pure Substances (Elsevier, Amsterdam, 1973).Google Scholar
  23. 23.
    R. S. Bradley and T. G. Cleasby,J. Chem. Soc. 1960 (1953).Google Scholar
  24. 24.
    G. M. Brown, P. Dubreuil, F. M. Ichhaporia, and J. E. Desnoyers,Can. J. Chem. 48, 2525 (1970).Google Scholar
  25. 25.
    R. Bury, M. Lucas, and P. Barberi,J. Chim. Phys. 75, 575 (1978).Google Scholar
  26. 26.
    J. A. V. Butler, C. N. Ramchandani, and D. W. Thomson,J. Chem. Soc. 280 (1935).Google Scholar
  27. 27.
    J. A. V. Butler and C. N. Ramchandani,J. Chem. Soc. 952 (1935).Google Scholar
  28. 28.
    J. A. V. Butler and W. S. Reid,J. Chem. Soc. 1171 (1936).Google Scholar
  29. 29.
    J. A. V. Butler,Trans. Faraday Soc. 33, 229 (1937).Google Scholar
  30. 30.
    R. G. Buttery, L. C. Ling, and D. G. Guadagni,J. Agr. Food Chem. 17, 385 (1969).Google Scholar
  31. 31.
    R. G. Buttery, J. L. Bomben, D. G. Guadagni, and L. C. Ling,J. Agr. Food Chem. 19, 1045 (1971).Google Scholar
  32. 32.
    S. Cabani, G. Conti, and L. Lepori,Trans. Faraday Soc. 67, 1933 (1971).Google Scholar
  33. 33.
    S. Cabani, G. Conti, and L. Lepori,Trans Faraday Soc. 67, 1943 (1971).Google Scholar
  34. 34.
    S. Cabani, G. Conti, and L. Lepori,J. Phys. Chem. 76, 1338 (1972).Google Scholar
  35. 35.
    S. Cabani, G. Conti, A. Martinelli, and E. Matteoli,J. Chem. Soc., Faraday Trans. I 69, 2112 (1973).Google Scholar
  36. 36.
    S. Cabani, G. Conti, and L. Lepori,J. Phys. Chem. 78, 1030 (1974).Google Scholar
  37. 37.
    S. Cabani, G. Conti, D. Giannessi, and L. Lepori,J. Chem. Soc., Faraday Trans. I 71, 1154 (1975).Google Scholar
  38. 38.
    S. Cabani, G. Conti, V. Mollica, and L. Lepori,J. Chem. Soc., Faraday Trans. I 71, 1143 (1975).Google Scholar
  39. 39.
    S. Cabani, G. Conti, and E. Matteoli,J. Solution Chem. 5, 125 (1976).Google Scholar
  40. 40.
    S. Cabani, L. Lepori, and E. Matteoli,Chim. Ind. (Milan) 58, 221 (1976).Google Scholar
  41. 41.
    S. Cabani, V. Mollica, L. Lepori, and S. T. Lobo,J. Phys. Chem. 81, 982 (1977).Google Scholar
  42. 42.
    S. Cabani, V. Mollica, L. Lepori, and S. T. Lobo,J. Phys. Chem. 81, 987, (1977).Google Scholar
  43. 43.
    S. Cabani, V. Mollica, and L. Lepori,J. Chem. Soc., Faraday Trans. I 74, 2667 (1978).Google Scholar
  44. 44.
    S. Cabani, S. T. Lobo, and E. Matteoli,J. Solution Chem. 8, 5 (1979).Google Scholar
  45. 45.
    S. Cabani, unpublished results.Google Scholar
  46. 46.
    A. Cesaro, E. Russo, and V. Crescenzi,J. Phys. Chem. 80, 335 (1976).Google Scholar
  47. 47.
    Chemical Abstracts Index Guide, Am. Chem. Soc., Appendix IV (1977).Google Scholar
  48. 48.
    A. O. Christie and D. J. Crisp,J. Appl. Chem. 17, 11 (1967).Google Scholar
  49. 49.
    F. E. Condon, R. T. Reece, D. G. Shapiro, D. C. Thakkar, and T. Briks Goldstein,J. Chem. Soc., Perkin II, 1112 (1974).Google Scholar
  50. 50.
    G. Conti, P. Gianni, E. Matteoli, and M. Mengheri,Chim. Ind. (Milan),58, 225 (1976).Google Scholar
  51. 51.
    B. E. Conway and L. H. Laliberté inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds., (Taylor and Francis, London, 1968), p. 139.Google Scholar
  52. 52.
    J. M. Corkill, J. F. Goodman, and T. Walker,Trans. Faraday. Soc. 63, 768 (1967).Google Scholar
  53. 53.
    J. M. Corkill, J. F. Goodman, and J. R. Tate,Trans. Faraday Soc. 65, 1742 (1969).Google Scholar
  54. 54.
    J. D. Cox and G. Pilcher, inThermochemistry of Organic and Organometallic Compounds (Academic Press, London, 1970).Google Scholar
  55. 55.
    J. Daniel and E. J. Cohn,J. Amer. Chem. Soc. 58, 415 (1936).Google Scholar
  56. 56.
    G. Della Gatta, Private communication.Google Scholar
  57. 57.
    P. P. DeLuca and T. V. Rebagay,J. Phys. Chem. 79, 2493 (1975).Google Scholar
  58. 58.
    N. C. Deno and H. E. Berkheimer,J. Chem. Eng. Data 5, 1 (1960).Google Scholar
  59. 59.
    J. E. Esnoyers and F. M. Ichhaporia,Can. J. Chem. 47, 4639 (1969).Google Scholar
  60. 60.
    J. E. Desnoyers, R. Pagé, G. Perron, J.-L. Fortier, P.-A. Leduc, and R. F. Platford,Can. J. Chem. 51, 2129 (1973).Google Scholar
  61. 61.
    C. de Visser, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 856 (1977).Google Scholar
  62. 62.
    C. de Visser, G. Perron, J. E. Desnoyers, W. J. M. Heuvelsland, and G. Somsen,J. Chem. Eng. Data 22, 74 (1977).Google Scholar
  63. 63.
    C. de Visser, P. Pel, and G. Somsen,J. Solution Chem. 6, 571 (1977).Google Scholar
  64. 64.
    C. de Visser, W. J. M. Heuvelsland, L. A. Dunn, and G. Somsen,J. Chem. Soc., Faraday Trans. I 74, 1159 (1978).Google Scholar
  65. 65.
    G. Dipaola and B. Belleau,Can. J. Chem. 55, 3825 (1977).Google Scholar
  66. 66.
    R. R. Dreisbach,Advan. Chem. Ser. No. 15 (1955), No. 22 (1955), No. 29 (1961).Google Scholar
  67. 67.
    J. T. Edsall,J. Am. Chem. Soc. 57, 1506 (1935).Google Scholar
  68. 68.
    J. T. Edward,J. Chem. Educ. 47, 261 (1970).Google Scholar
  69. 69.
    J. T. Edward, P. G. Farrell, and F. Shahidi,J. Chem. Soc., Faraday Trans. I 73, 705 (1977).Google Scholar
  70. 70.
    O. Enea, P. P. Singh, and L. G. Hepler,J. Solution Chem. 6, 719 (1977).Google Scholar
  71. 71.
    O. Enea, C. Jolicoeur, and L. G. Hepler,Can. J. Chem. 58, 704 (1980).Google Scholar
  72. 72.
    F. Franks and H. T. Smith,Trans. Faraday Soc. 64, 2962 (1968).Google Scholar
  73. 73.
    F. Franks and B. Watson,Trans. Faraday Soc. 65, 2339 (1969).Google Scholar
  74. 74.
    F. Franks, M. A. J. Quickenden, D. S. Reid, and B. Watson,Trans. Faraday Soc. 66, 582 (1970).Google Scholar
  75. 75.
    F. Franks, J. R. Ravenhill, and D. S. Reid,J. Solution Chem. 1, 3 (1972).Google Scholar
  76. 76.
    M. E. Friedman and H. A. Scheraga,J. Phys. Chem. 69, 3795 (1965).Google Scholar
  77. 77.
    S. Friedman, A. Caille, and H. Daoust,Macromolecules 3, 700 (1970).Google Scholar
  78. 78.
    J. E. Garrod and T. M. Herrington,J. Phys. Chem. 74, 363 (1970).Google Scholar
  79. 79.
    A. R. Giaquinto, R. E. Lindstrom, J. Swarbrick, and A. LoSurdo,J. Solution Chem. 6, 687 (1977).Google Scholar
  80. 80.
    S. J. Gill, N. F. Nichols, and I. Wadsö,J. Chem. Thermodyn. 8, 445 (1976).Google Scholar
  81. 81.
    P. Gross, J. C. Rintelen, and J. H. Saylor,J. Phys. Chem. 43, 197 (1939).Google Scholar
  82. 82.
    F. T. Gucker, Jr., and F. D. Ayres,J. Am. Chem. Soc. 59, 447 (1937).Google Scholar
  83. 83.
    F. T. Gucker, Jr., and F. D. Ayres,J. Am. Chem. Soc. 59, 2152 (1937).Google Scholar
  84. 84.
    F. T. Gucker, Jr., and T. W. Allen,J. Am. Chem. Soc. 64, 191 (1942).Google Scholar
  85. 86.
    J. P. Guthrie,Can. J. Chem. 55, 3700 (1977).Google Scholar
  86. 87.
    S. D. Hamann and S. C. Lim,Aust. J. Chem. 7, 329 (1954).Google Scholar
  87. 88.
    S. D. Hamann and M. Linton,J. Chem. Soc., Faraday Trans. I 70, 2239 (1974).Google Scholar
  88. 89.
    D. Hamilton and R. H. Stokes,J. Solution Chem. 1, 213 (1972).Google Scholar
  89. 90.
    S. Harada, T. Nakajima, T. Komatsu, and T. Nakagawa,J. Solution Chem. 7, 463 (1978).Google Scholar
  90. 91.
    S. Harada and T. Nakagawa,J. Solution Chem. 8, 267 (1979).Google Scholar
  91. 92.
    T. T. Herskovits and T. M. Kelly,J. Phys. Chem. 77, 381 (1973).Google Scholar
  92. 93.
    D. J. T. Hill and L. R. White,Aust. J. Chem. 27, 1905 (1974).Google Scholar
  93. 94.
    J. Hine and P. K. Mookerjee,J. Org. Chem. 40, 292 (1975).Google Scholar
  94. 95.
    H. Høiland,Acta Chem. Scand. A-28, 699 (1974).Google Scholar
  95. 96.
    H. Høiland and E. Vikingstad,J. Chem. Soc. Faraday Trans. I 71, 2007 (1975).Google Scholar
  96. 97.
    H. Høiland,J. Chem. Soc. Faraday Trans. I 71, 797 (1975).Google Scholar
  97. 98.
    H. Høiland and E. Vikingstad,Acta Chem. Scand. A-30, 182 (1976).Google Scholar
  98. 99.
    H. Høiland and H. Holvik,J. Solution Chem. 7, 587 (1978).Google Scholar
  99. 100.
    H. Hølland and E. A. Moelwyn-Hughes,Trans. Faraday Soc. 52, 297 (1956).Google Scholar
  100. 101.
    H. P. Hopkins, Jr., W. C. Duer, and F. J. Millero,J. Solution Chem. 5, 263 (1976Google Scholar
  101. 102.
    P. B. Howard and I. Wadsö,Acta Chem. Scand. 24, 145 (1970).Google Scholar
  102. 103.
    A. Indelli,Ann. Chim. (Roma) 53, 605 (1963).Google Scholar
  103. 104.
    C. Jolicoeur, P. Picker, and G. Perron,Can. J. Chem. 53, 3634 (1975).Google Scholar
  104. 105.
    C. Jolicoeur and G. Lacroix,Can. J. Chem. 54, 624 (1976).Google Scholar
  105. 106.
    C. Jolicoeur, Private communication.Google Scholar
  106. 107.
    M. V. Kaulgud and K. J. Patill,J. Phys. Chem. 78, 714 (1974).Google Scholar
  107. 108.
    M. V. Kaulgud and K. J. Patill,J. Phys. Chem. 80, 138 (1976).Google Scholar
  108. 109.
    F. Kawaizumi, T. Noguchi, and Y. Miyahara,Bull. Chem. Soc. Japan 50, 1687 (1977).Google Scholar
  109. 110.
    M. V. Kilday,J. Res. Natl. Bur. Stand. 83, 347, 529, 539, 547 (1978).Google Scholar
  110. 111.
    E. J. King,J. Phys. Chem. 73, 1220 (1969).Google Scholar
  111. 112.
    O. Kiyohara, G. Perron, and J. E. Desnoyers,Can. J. Chem. 53, 2591 (1975).Google Scholar
  112. 113.
    O. Kiyohara, G. Perron, and J. E. Desnoyers,Can. J. Chem. 53, 3263 (1975).Google Scholar
  113. 114.
    J. Konicek and I. Wadsö,Acta Chem. Scand. 25, 1541 (1971).Google Scholar
  114. 115.
    K. Kusano, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 5, 757 (1973).Google Scholar
  115. 116.
    K. Kusano, Private communication.Google Scholar
  116. 117.
    L. H. Laliberté and B. E. Conway,J. Phys. Chem. 74, 4116 (1970).Google Scholar
  117. 118.
    J. Lawrence and B. E. Conway,J. Phys. Chem. 75, 2353 (1971).Google Scholar
  118. 119.
    L. Lepori and V. Mollica,J. Chem. Eng. Data 23, 65 (1978).Google Scholar
  119. 120.
    L. Lepori and V. Mollica,J. Polym. Sci. A-2 16, 1123 (1978).Google Scholar
  120. 121.
    C. L. Liotta, A. Abidaud, and H. P. Hopkins, Jr.,J. Am. Chem. Soc. 94, 8624 (1972).Google Scholar
  121. 122.
    C. L. Liotta, H. P. Hopkins, Jr., and P. T. Kasudia,J. Am. Chem. Soc. 96, 7153 (1974).Google Scholar
  122. 123.
    C. L. Liotta, E. M. Perdue, and H. P. Hopkins, Jr.,J. Am. Chem. Soc. 96, 7981 (1974).Google Scholar
  123. 124.
    L. G. Longsworth,J. Phys. Chem. 67, 689 (1963).Google Scholar
  124. 125.
    A. Lo Surdo, C. Shin, and F. J. Millero,J. Chem. Eng. Data 23, 197 (1978).Google Scholar
  125. 126.
    D. D. MacDonald, M. E. Estep, M. D. Smith, and J. B. Byne,J. Solution Chem. 3, 713 (1974).Google Scholar
  126. 127.
    D. MacKay and W. Y. Shin,J. Chem. Eng. Data 22, 399 (1977).Google Scholar
  127. 128.
    M. Manabe and M. Koda,Bull. Chem. Soc. Japan 48, 2367 (1975).Google Scholar
  128. 129.
    M. Manabe and M. Koda,Mem. Niihama Tech. Coll. 12, 68 (1976).Google Scholar
  129. 130.
    W. L. Masterton,J. Chem. Phys. 22, 1830 (1954).Google Scholar
  130. 131.
    J. G. Mathieson and B. E. Conway,J. Solution Chem. 4, 17 (1975).Google Scholar
  131. 132.
    C. McAuliffe,J. Phys. Chem. 70, 1267 (1966).Google Scholar
  132. 133.
    V. Mollica and L. Lepori,Chim. Ind. (Milan) 59, 877 (1977).Google Scholar
  133. 134.
    T. Nakajiman, T. Komatsu, and T. Nakagawa,Bull. Chem. Soc. Japan 48, 783 (1975).Google Scholar
  134. 135.
    K. Nakanishi and M. Kurata,Bull. Chem. Soc. Japan 33, 152 (1960).Google Scholar
  135. 136.
    K. Nakanishi, N. Kato, and M. Maryuama,J. Phys. Chem. 71, 814 (1967).Google Scholar
  136. 137.
    J. L. Neal and D. A. I. Goring,J. Phys. Chem. 74, 658 (1970).Google Scholar
  137. 138.
    J. L. Neal and A. D. I. Goring,J. Phys. Chem. 74, 658 (1970).Google Scholar
  138. 138.
    H. D. Nelson and C. L. de Ligny,Rec. Trav. Chim. 87, 528 (1968).Google Scholar
  139. 139.
    G. Némethy and H. A. Scheraga,J. Chem. Phys. 36, 3401 (1962).Google Scholar
  140. 140.
    N. Nichols and I. Wadsö,J. Chem. Thermodyn. 7, 329 (1975).Google Scholar
  141. 141.
    N. Nichols, R. Skold, C. Spink, and I. Wadsö,J. Chem. Thermodyn. 8, 993 (1976).Google Scholar
  142. 142.
    N. Nichols, R. Skold, C. Spink, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 8, 1081 (1976).Google Scholar
  143. 143.
    M. Palma and J. P. Morel,J. Chim. Phys. 73, 643 (1976).Google Scholar
  144. 144.
    P. Paoletti, Private communication.Google Scholar
  145. 145.
    G. H. Parsons, C. H. Rochester, and C. E. C. Wood,J. Chem. Soc. B 533 (1971).Google Scholar
  146. 146.
    G. H. Parsons, C. H. Rochester, A. Rostron, and P. C. Sykes,J. Chem. Soc., Perkin Trans. II 136 (1972).Google Scholar
  147. 147.
    G. Perron and J. E. Desnoyers,Fluid Phase Equilibria 2, 239 (1979).Google Scholar
  148. 148.
    P. R. Philip, G. Perron, and J. E. Desnoyers,Can. J. Chem. 52, 1709 (1974).Google Scholar
  149. 149.
    P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).Google Scholar
  150. 150.
    A. Ray and G. Némethy,J. Chem. Eng. Data 18, 309 (1973).Google Scholar
  151. 151.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood,The Properties of Gases and Liquids, 3rd ed., (McGraw-Hill, New York, 1977).Google Scholar
  152. 152.
    D. Richon and A. Viallard,Can. J. Chem. 54, 2584 (1976).Google Scholar
  153. 153.
    D. N. Rihani and L. K. Doraiswamy,Ind. Eng. Chem. Fundam. 4, 17 (1965).Google Scholar
  154. 154.
    C. H. Rochester and J. R. Symonds,J. Chem. Soc. Faraday Trans. I 69, 1577 (1973).Google Scholar
  155. 155.
    G. Roux, G. Perron, and J. E. Desnoyers,Can. J. Chem. 56, 2808 (1978).Google Scholar
  156. 156.
    G. Roux, G. Perron, and J. E. Desnoyers,J. Solution Chem. 7, 639 (1978).Google Scholar
  157. 157.
    H. Ruterjans, F. Schreiner, U. Sage, and T. Ackermann,J. Phys. Chem. 73, 986 (1969).Google Scholar
  158. 158.
    L. S. Sandell and D. A. I. Goring,J. Polym. Sci. A-2 9, 115 (1971).Google Scholar
  159. 159.
    J. Sangster, T. T. Teng, and P. Lenzi,J. Solution Chem. 5, 575 (1976).Google Scholar
  160. 160.
    J. H. Saylor, V. J. Baxt, and P. M. Gross,J. Am. Chem. Soc. 64, 2742 (1942).Google Scholar
  161. 161.
    P. Sellers and S. Sunner,Acta Chem. Scand. 16, 46 (1962).Google Scholar
  162. 162.
    F. Shahidi, P. G. Farrell, and J. T. Edward,J. Solution Chem. 5, 807 (1976).Google Scholar
  163. 163.
    F. Shahidi, P. G. Farrell, and J. T. Edward,J. Chem. Soc., Faraday Trans I 73, 715 (1977).Google Scholar
  164. 164.
    F. Shahidi and P. G. Farrell,J. Chem. Soc., Faraday Trans. I 74, 858 (1978).Google Scholar
  165. 165.
    R. Shaw,J. Chem. Eng. Data 14, 461 (1969).Google Scholar
  166. 166.
    R. Singer, H. Arm, and H. Daeniker,Helv. Chim. Acta 52, 2347 (1969).Google Scholar
  167. 167.
    R. Skold, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 8, 1075 (1976).Google Scholar
  168. 168.
    J. H. Stern and A. Hermann,J. Phys. Chem. 72, 364 (1968).Google Scholar
  169. 169.
    J. H. Stern and J. T. Swearingen,J. Phys. Chem. 74, 167 (1970).Google Scholar
  170. 170.
    J. H. Stern and L. R. Beeninga,J. Phys. Chem. 79, 582 (1975).Google Scholar
  171. 171.
    R. H. Stokes,Aust. J. Chem. 28, 2109 (1975).Google Scholar
  172. 172.
    D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke,The Chemical Thermodynamics of Organic Compounds (Wiley, New York, 1969).Google Scholar
  173. 173.
    S. Subramanian, D. Bala Subramanian, and J. C. Ahluwalia,J. Phys. Chem. 73, 266 (1969).Google Scholar
  174. 174.
    J. Szeminska, W. Zielenkiewicz, and K. L. Wierzchowski,Biophys. Chem. 10, 409 (1979).Google Scholar
  175. 175.
    S. Terasawa, H. Itsuki, and S. Arakawa,J. Phys. Chem. 79, 2345 (1975).Google Scholar
  176. 176.
    E. W. Tiepel and K. E. Gubbins,J. Phys. Chem. 76, 3044 (1972).Google Scholar
  177. 177.
    V. A. Vasilev, E. Y. Shevchenko, N. V. Fedyainov, and M. V. Golikov,Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Teknol. 20, 1557 (1977).Google Scholar
  178. 178.
    R. E. Verrall and B. E. Conway,J. Phys. Chem. 70, 3961 (1966).Google Scholar
  179. 179.
    I. Wadsö,Acta Chem. Scand. 23, 2061 (1969).Google Scholar
  180. 180.
    W. J. Wallace, C. S. Shephard, and C. Underwood,J. Chem. Eng. Data 13, 11 (1968).Google Scholar
  181. 181.
    R. D. Wauchope and R. Haque,Can. J. Chem. 50, 133 (1972).Google Scholar
  182. 182.
    W. Y. Wen, N. Takeguchi, and D. P. Wilson,J. Solution Chem. 3, 103 (1974).Google Scholar
  183. 183.
    E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev. 77, 219 (1977).Google Scholar
  184. 184.
    R. Wolfenden,J. Am. Chem. Soc. 98, 1987 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Sergio Cabani
    • 1
  • Paolo Gianni
    • 1
  • Vincenzo Mollica
    • 1
  • Luciano Lepori
    • 2
  1. 1.Istituto di Chimica FisicaUniversità degli Studi di PisaPisaItaly
  2. 2.Istituto di Chimica Quantistica ed Energetica Molecolare del C.N.R.PisaItaly

Personalised recommendations