Advertisement

Journal of Solution Chemistry

, Volume 14, Issue 1, pp 27–34 | Cite as

Sugar-water interaction from diffusion measurements

  • Hisashi Uedaira
  • Hatsuho Uedaira
Article

Abstract

The diffusion coefficients of deoxyribose and ribose in water were measured at 25°C. The Stokes-Einstein relation for mono-, di-, and tri-saccharides are discussed. The diffusion coefficient at infinite dilution Do for deoxyribose was the largest among these sugars. It appears that the deoxyribose breaks local water structure but the ribose hardly affects the structure. Do correlates well with the mean number of e-OH groups in the sugar molecule. It is suggested that the mean number of e-OH groups is a good parameter to describe the properties of sugar hydration.

Key words

Diffusion coefficient partial molar volume Stokes-Einstein relation equatorial hydroxy group deoxyribose ribose carbohydrates hydration conformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Franks,Polysaccharides in Food, J. M. V. Blanshard and L. R. Mitchel eds., (Butterworths, London-Boston, 1979), p. 33.Google Scholar
  2. 2.
    M. J. Tait, A. Suggett, F. Franks, S. Ablett, and P. A. Quickenden,J. Solution Chem. 1, 131 (1972).Google Scholar
  3. 3.
    H. Uedaira,Kagaku Sosetsu 11, 191 (1976).Google Scholar
  4. 4.
    H. Uedaira and H. Uedaira,Bull. Chem. Soc. Japan 53, 2451 (1980).Google Scholar
  5. 5.
    H. Uedaira,Sen-i Gakkaishi 37, 436 (1982).Google Scholar
  6. 6.
    H. Hoiland and H. Helge,J. Solution Chem. 7, 587 (1978).Google Scholar
  7. 7.
    G. Shahidi, F. G. Farrell, and J. T. Edward,J. Solution Chem. 5, 807 (1976).Google Scholar
  8. 8.
    H. Uedaira and H. Uedaira,Bull. Chem. Soc. Japan 42, 2137 (1969).Google Scholar
  9. 9.
    A. Suggett and A. H. Clark,J. Solution Chem. 5, 1 (1976).Google Scholar
  10. 10.
    H. Uedaira and H. Uedaira,Bull. Chem. Soc. Japan 42, 2140 (1969).Google Scholar
  11. 11.
    J. T. Edward,J. Chem. Educ. 47, 261 (1970).Google Scholar
  12. 12.
    H. Uedaira and H. Uedaira,J. Phys. Chem. 74, 2211 (1970).Google Scholar
  13. 13.
    S. J. Angyal and V. A. Picles,Aust. J. Chem. 25, 1695 (1972).Google Scholar
  14. 14.
    S. J. Angyal,Carbohydrates, Vol. IA, 2nd edn., W. Pigman and D. Horton, eds., (Academic Press, New York, 1972), Chap. 5.Google Scholar
  15. 15.
    R. U. Lemieu,Molecular Rearrangements, P. de Mayo ed., (Wiley Interscience, New York, 1963), p. 713.Google Scholar
  16. 16.
    S. J. Angyal and V. A. Picles,Aust. J. Chem. 25, 1711 (1972); S. J. Angyal,Angew. Chem. Intern. Ed. 13, 146 (1976).Google Scholar
  17. 17.
    L. Que and G. R. Gray,Biochemistry 13, 146 (1976).Google Scholar
  18. 18.
    J. H. Stern and P. M. Hubber,J. Phys. Chem. 88, 1680 (1984).Google Scholar
  19. 19.
    L. J. Gosting and M. S. Morris,J. Am. Chem. Soc. 71, 1998 (1949).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Hisashi Uedaira
    • 1
  • Hatsuho Uedaira
    • 2
  1. 1.Department of Polymer ScienceHokkaido UniversitySapporoJapan
  2. 2.Research Institute for Polymers and TextilesTsukuba, IbarakiJapan

Personalised recommendations