Solar Physics

, Volume 143, Issue 2, pp 327–343 | Cite as

Thermal and nonthermal emissions during a coronal mass ejection

  • N. Gopalswamy
  • M. R. Kundu
Article

Abstract

We report on the thermal and nonthermal radio emissions from a coronal mass ejection (CME) observed at meter-decameter wavelengths using the Clark Lake multifrequency radioheliograph. From white-light observations of the Solar Maximum Mission Coronagraph/Polarimeter instrument the CME was found to have a speed of ∼ 450 km s−1. Since there was no nonthermal radio emission in the beginning of the event and the one which occurred later was quite weak, we were able to observe the thermal structure of the CME in radio. Type III bursts and a nonthermal continuum started several minutes after the CME onset. We use the radio and optical observations to show that the CME was not driven by the flare. We investigate the thermal structure and geometry of the mass ejection in radio and compare it with the optical evidence. Finally we develop a schematic model of the event and point out that particle acceleration high in the corona is possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erickson, W. C. and Fisher, J. R.: 1974,Radio Sci. 9, 387.Google Scholar
  2. Erickson, W. C., Mahoney, M. J., and Erb, K.: 1982,Astrophys. J. Suppl. 50, 403.Google Scholar
  3. Gopalswamy, N. and Kundu, M. R.: 1989a,Solar Phys. 122, 145.Google Scholar
  4. Gopalswamy, N. and Kundu, M. R.: 1989b,Solar Phys. 122, 91.Google Scholar
  5. Gopalswamy, N. and Kundu, M. R.: 1990,Solar Phys. 128, 377.Google Scholar
  6. Gopalswamy, N. and Kundu, M. R.: 1992,Astrophys. J. 390, L37.Google Scholar
  7. Hildner, E.: 1977, in M. A. Shea, D. F. Smart, and S. T. Wu (eds.),Study of Travelling Interplanetary Phenomena, D. Reidel Publ. Co., Dordrecht, Holland, p. 6.Google Scholar
  8. Hundhausen, A. J.: 1988, in V. J. Pizzo, T. E. Holzer, and D. G. Sime (eds.),Solar Wind VI, Vol.I, NCAR 306, Boulder, p. 181.Google Scholar
  9. Howard, R. A., Sheeley, N. R., Koomen, M. J., and Michels, D. J.: 1984,Adv. Space Res. 4, 307.Google Scholar
  10. Jackson, B. V.: 1985,Solar Phys. 100, 563.Google Scholar
  11. Kundu, M. R.: 1987,Solar Phys. 111, 53.Google Scholar
  12. Kundu, M. R., and Gopalswamy, N.: 1990,Solar Phys. 129, 133.Google Scholar
  13. Kundu, M. R., Erickson, W. C., Gergely, T. E., Mahoney, M. J., and Turner, P. J.: 1983,Solar Phys. 83, 385.Google Scholar
  14. Kundu, M. R., Gopalswamy, N., White, S. M., Schmahl, E. J., Cargill, P. J., and Hildner, E.: 1989,Astrophys. J. 347, 505.Google Scholar
  15. Poland, A. I., Howard, R. A., Koomen, M. J., Michels, D. J., and Sheeley, N. R., Jr.: 1981,Solar Phys. 69, 169.Google Scholar
  16. Robinson, R. D.: 1985, in D. J. McLean and N. R. Labrum (eds.),Solar Radiophysics, Cambridge University Press, Cambridge, p. 385.Google Scholar
  17. Sheridan, K. V., Jackson, B. V., McLean, D. J., and Dulk, G. A.: 1978,Proc. Astron. Soc. Australia 3, 249.Google Scholar
  18. švestka, Z.: 1983,Space Sci. Rev. 35, 259.Google Scholar
  19. Vlahos, L., Gergely, T. E., and Papadopoulos, K.: 1982,Astrophys. J. 258, 812.Google Scholar
  20. Wagner, W.: 1984,Ann. Rev. Astron. Astrophys. 22, 267.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • N. Gopalswamy
    • 1
  • M. R. Kundu
    • 1
  1. 1.Astronomy DepartmentUniversity of MarylandCollege ParkUSA

Personalised recommendations