Journal of Solution Chemistry

, Volume 17, Issue 7, pp 673–696 | Cite as

Heat capacities, volumes and solubilities of pentanol in aqueous alkyltrimethylammonium bromides

  • R. DeLisi
  • S. Milioto
  • R. Triolo


Apparent molar heat capacities and volumes of pentanol, 0.05m in decyl-, tetradecyl- and hexadecyltrimethylammonium bromides micellar solutions, were measured at 25°C. They were assumed to approach the standard infinite dilution values and rationalized by means of previously reported equations following which the distribution constant between the aqueous and the micellar phase, heat capacity, and volume of pentanol in both phases are simultaneously derived. The present results show that the volume of the micellar core does not seem to have a significant effect on the apparent molar volume and heat capacity of pentanol in the micellar phase and on the free energy of transfer of pentanol from the aqueous to the micellar phase. We report an equation correlating the free energy of transfer of alcohols in alkyltrimethylammonium bromides as a function of the number of carbon atoms in the alcohol and surfactant alkyl chain. Also, the apparent molar heat capacities of pentanol in micellar solutions as a function of surfactant concentration show evidence of two maxima, which, by increasing the alkyl chain length of surfactant display an opposite dependence on concentration. The second maximum can be attributed to a sphere to rod transition. The second transition was also found in the case of butoxyethanol in hexadecyltrimethylammonium bromide. It is more difficult to explain the nature of the first maximum although an attempt is made.

Key words

Pentanol butoxyethanol decyltrimethylammonium, dodecyltrimethylammonium, tetradecyltrimethylammonium and hexadecyltrimethylammonium bromide heat capacities apparent molar volumes pentanol-micelles binding constants ternary phase diagrams post micellar transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Lindblom, B. Lindman, and L. Mandell,J. Colloid Interf. Sci. 42, 400 (1973).Google Scholar
  2. 2.
    P. Ekwall, L. Mandell, and P. Solyom,J. Colloid Interf. Sci. 35, 519 (1971).Google Scholar
  3. 3.
    K. G. Gotz and K. Heckmann,J. Colloid Sci. 13, 206 (1958).Google Scholar
  4. 4.
    K. G. Gotz and K. Heckmann,Z. Physik. Chem. 20, 42 (1959).Google Scholar
  5. 5.
    F. Quirion and J. E. Desnoyers,J. Colloid Interf. Sci. 112, 565 (1986).Google Scholar
  6. 6.
    C. Treiner, A. K. Chattopadhyay, and R. Bury,J. Colloid Interf. Sci. 104, 569 (1985).Google Scholar
  7. 7.
    F. Quirion and J. E. Desnoyers,J. Colloid Interf. Sci. 115, 176 (1987).Google Scholar
  8. 8.
    P. Lianos and R. Zana,J. Colloid Interf. Sci. 101, 587 (1984).Google Scholar
  9. 9.
    R. De Lisi and S. Milioto,J. Solution Chem. 16, 767 (1987).Google Scholar
  10. 10.
    R. De Lisi and S. Milioto,Colloids and Surfaces (submitted).Google Scholar
  11. 11.
    J. H. Hogan, R. A. Engel, and H. F. Stevenson,Anal. Chem. 42, 249 (1970).Google Scholar
  12. 12.
    P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 361 (1971).Google Scholar
  13. 13.
    M. F. Stimson,Am. J. Phys. 23, 614 (1955).Google Scholar
  14. 14.
    G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).Google Scholar
  15. 15.
    R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).Google Scholar
  16. 16.
    R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers,J. Colloid Interf. Sci. 71, 147 (1979).Google Scholar
  17. 17.
    J. E. Desnoyers, R. De Lisi, and G. Perron,Pure and Appl. Chem. 52, 433 (1980).Google Scholar
  18. 18.
    R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interf. Sci. 80, 208 (1981).Google Scholar
  19. 19.
    M. Mansson, P. Sellers, G. Stridh, and S. Sunner,J. Chem. Thermodyn. 8, 1081 (1976).Google Scholar
  20. 20.
    D. Mirejovsky and E. M. Arnett,J. Am. Chem. Soc. 105, 1112 (1983).Google Scholar
  21. 21.
    J. T. Edward, P. G. Farrell, and F. Shahidi,Can. J. Chem. 58, 2887 (1979).Google Scholar
  22. 22.
    R. De Lisi, C. Genova, R. Testa, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).Google Scholar
  23. 23.
    R. De Lisi, S. Milioto, M. Castagnolo, and A. Inglese,J. Solution Chem. 16, 373 (1987).Google Scholar
  24. 24.
    C. Treiner,J. Colloid Interf. Sci. 93, 33 (1983).Google Scholar
  25. 25.
    R. De Lisi, A. Lizzio, S. Milioto, and V. Turco Liveri,J. Solution Chem. 15, 623 (1986).Google Scholar
  26. 26.
    S. Kaneshina, H. Kamaya, and I. Ueda,J. Colloid Interf. Sci. 83, 589 (1981).Google Scholar
  27. 27.
    R. De Lisi and S. Milioto,J. Solution Chem. 17, 245 (1988).Google Scholar
  28. 28.
    H. Hoiland, A. M. Blokhus, O. J. Kvammen, and S. Backlund,J. Colloid Interf. Sci. 107, 576 (1985).Google Scholar
  29. 29.
    G. Roux-Desgranges, A. H. Roux, and A. Viallard,J. Chim. Phys. 82, 441 (1985).Google Scholar
  30. 30.
    F. Reiss-Husson and V. Luzzati,J. Phys. Chem. 68, 3504 (1964).Google Scholar
  31. 31.
    E. Graber, J. Lang, and R. Zana, Kolloid-Z.Z.Polym. 238, 470 (1970).Google Scholar
  32. 32.
    B. Lindmann, N. Kamenka, M. C. Puyal, R. Rymden, and P. Stilbs,J. Phys. Chem. 88, 5048 (1984).Google Scholar
  33. 33.
    E. Abuin and E. A. Lissi,J. Colloid Interf. Sci. 95, 198 (1983).Google Scholar
  34. 34.
    P. Lianos and R. Zana,J. Colloid Interf. Sci. 84, 100 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • R. DeLisi
    • 1
  • S. Milioto
    • 1
  • R. Triolo
    • 1
  1. 1.Institute of Physical ChemistryUniversity of PalermoPalermoItaly

Personalised recommendations