Astrophysics and Space Science

, Volume 239, Issue 2, pp 221–228 | Cite as

Single layer atmospheric turbulence demonstrated by adaptive optics observations

  • E. Gendron
  • P. Léna


Carried with an astronomical adaptive optics (AO) system, this work reports the observational evidences of wave-front deformations dominated by sources of perturbation acting as phase slabs moving at a constant speed in front of the telescope aperture. Consequences for improved adaptive optics compensation are suggested.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckers J.M., “Adaptive optics for astronomy: principle, performance and applications”, 1993, Ann. Rev. Astr. Astrophys.,31, 13Google Scholar
  2. Bester M., Danchi W.C., Degiacomi C.G., Greenhill L.J., Townes C.H., “Atmospheric fluctuations: empirical structure functions and projected performance of future instruments”, 1992, ApJ,392, 357Google Scholar
  3. Caccia J.L., Azouit M., Vernin J., “Wind and CN2 profiling by single-star scintillation analysis”, 1987, Applied Optics,26, 1288Google Scholar
  4. Clifford S.F., “Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence”, 1971, JOSA,61, 1285Google Scholar
  5. Conan J.M., Rousset G., Madec P.Y., “Wave-front temporal spectra in high-resolution imaging through turbulence”, 1995, JOSA A,12, 1559Google Scholar
  6. Esslinger O., Edmunds M.G., “Improving the natural guide star magnitude limit for wavefront sensing”, 1995, Astron. Astrophys., in preparation.Google Scholar
  7. Favre A., Gaviglio J., Dumas R., “Space-time double correlations and spectra in a turbulent boundary layer”, 1957, J. of Fl. Mech.,2, Part 4, 313Google Scholar
  8. Favre A., Gaviglio J., Dumas R., “Further space-time correlations of velocity in a turbulent boundary layer”, 1958, J. of Fl. Mech.,3, Part 4, p 344Google Scholar
  9. Hogge C.B., R.R. Butts, “Frequency spectra for the geometric representation of wavefront distortions due to atmospheric turbulence”, 1976, IEEE transaction on antennas and propagation,24, 114Google Scholar
  10. Jorgenson M.B., Aitken G.J.M., “Wavefront prediction for adaptive optics”, 1993, in ICO-16 Satellite Conference on Active and adaptive Optics, Garching (Germany), 143Google Scholar
  11. Léna P., “Astrophysics with adaptive optics: results and challenges”, 1994, Adaptive optics for astronomy, NATO-ASI, Ed. D. Alloin and J.-M. Mariotti, Kluwer, 321Google Scholar
  12. Léna, P., 1995, in Adaptive optics in astronomy, ESO-OSA Conference, GarchingGoogle Scholar
  13. Madec P.-Y., Conan J.-M., Rousset G., “Temporal characterization of atmospheric wavefront for adaptive optics”, 1992, inProgress in Telescope and Instrumentation Technologies, ESO Conf. 27–30 Apr 92, Garching (Germany), Ed. M.-H. Ulrich, 471Google Scholar
  14. Noll R.J., “Zernike polynomials and atmospheric turbulence”, 1976, JOSA,66, 207Google Scholar
  15. Rigaut F., Rousset G., Kern, P., Fontanella J.C., Gaffard J.P., Merkle F., Léna P., “Adaptive optics on a 3.6 m telescope: results and performances”, 1991, Astron. Astrophys.,250, 280Google Scholar
  16. Roddier F., “The effect of atmospheric turbulence in optical astronomy”, 1981, E. Wolf Ed., Progress in Optics Vol. XIXGoogle Scholar
  17. Roddier F., Northcott M., Graves, J.E., McKenna D.L., “One dimensional spectra of turbulence-induced Zernike aberrations: time-delay and isoplanicity error in partial adaptive compensation”, 1993, JOSA,10, 957Google Scholar
  18. Rousset G., Beuzit, J.-L., Hubin, N., Gendron E., Boyer C., Madec P.-Y., Gigan P., Richard J.C., Vittot M., Gaffard J.P., Rigaut F., Léna P., “The Come-On-Plus Adaptive Optics System: Results and performance”, 1993, ICO conference on Active and Adaptive Optics, Garching (Germany), August 2–5, 65Google Scholar
  19. Rousset G., Beuzit J.L. et al., “Performances and results of the ComeOnPlus adaptive optics system at the ESO 3.6 m telescope”, 1994, Proc. SPIE 2201, 1088Google Scholar
  20. Sarazin M., “Use of a large-scale spatial coherence of turbulence patterns for predicting observation conditions at astronomical observatories”, 1992, Atmospheric and Oceanic Optics,5, 830Google Scholar
  21. Schwartz C., Baum, G., Ribak, E.N., “Turbulence-degraded wave fronts as fractal surfaces”, 1994, J. Opt. Soc. Am. A,11, 444Google Scholar
  22. Taylor G.I., “The spectrum of turbulence”, 1938, Proc. R. Soc. London Ser. A.,164, 476Google Scholar
  23. Vernin J., Azouit M. “Traitement d'image adapté au speckle atmosphérique. II. Analyse multidimensionnelle appliquée au diagnostic à distance de la turbulence”, 1983, J. Optics (Paris),14, 131Google Scholar
  24. Vernin, J., Pelon, J., “Scidar/Lidar description of a gravity wave and associated turbulence: preliminary results”, 1986, Applied Optics,25, 2874Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • E. Gendron
    • 1
  • P. Léna
    • 1
  1. 1.Observatoire de Paris & Université Paris VII-D. Diderot Département de Recherche SpatialeU.R.A. CNRS 264Meudon CedexFrance

Personalised recommendations