Advertisement

Astrophysics and Space Science

, Volume 197, Issue 2, pp 269–281 | Cite as

The light curved in the CM field

  • J. H. Fan
  • G. Z. Xie
  • Y. J. Wang
  • J. Q. Wu
Article

Abstract

In this paper we introduce the CM field in Sections 2 and 3 based on the paper by Wang and Peng (1985), and calculate the light curved in the CM field in Section 4. The result shows thatP makes ΔφCM larger than ΔφC at\(\theta \in (\cos ^{ - 1} \tfrac{1}{3},\pi - \cos ^{ - 1} \tfrac{1}{3})\), and smaller at\(\theta \in (\theta ,\cos ^{ - 1} \tfrac{1}{3}) \cup (\pi - \cos ^{ - 3} \tfrac{1}{3},\pi )\). Under a special circumstance which source, CM lens, and observer are in the same line, if we get Δφ| 0=0 ,\(\Delta \phi |_{\theta = \cos ^{ - 1} } 1/3\) and Δφ| θ=π/2 , we can determine theP(M) andQ(M) of the CM lens,M is the mass of the CM lens.

Keywords

Special Circumstance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einstein, A.: 1936,Science 84, 506.Google Scholar
  2. Ibañez, J.: 1983,Astron. Astrophys. 124, 175.Google Scholar
  3. Liebes, S.: 1964,Phys. Rev. 133, B835.Google Scholar
  4. Schneider, P.: 1987,Mitt. Astron. Ges. 70, 219.Google Scholar
  5. Wang, K. L.: 1976,High Energy Phys. and Nuclear Phys. 2, 175.Google Scholar
  6. Wang, Y. J. and Peng, Q. H.: 1985,Scientia Sinica (Ser. A) XXVIII, 422.Google Scholar
  7. Young, P.: 1981,Astrophys. J. 244, 756.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • J. H. Fan
    • 1
  • G. Z. Xie
    • 1
  • Y. J. Wang
    • 2
  • J. Q. Wu
    • 1
  1. 1.Yunnan ObservatoryAcademia SinicaKunming, Yunnan ProvinceChina
  2. 2.Changsha Railway InstituteChangsha, Hunan ProvinceChina

Personalised recommendations