Astrophysics and Space Science

, Volume 147, Issue 2, pp 219–227

The Schoenberg-Chandrasekhar limit: A polytropic approximation

  • Martin Beech


The existence of a maximum isothermal core mass fraction (qmax), the Schoenberg-Chandrasekhar limit, is one of the ‘classic’ results from the theory of stellar structure. This limit can be demonstrated through a simplified composite polytrope model in which an isothermal core is surrounded by ann=1 polytrope envelope. While this model underestimatesqmas by ∼25% in the homogeneous case, it is accurate to within 5% in the more realistic inhomogeneous situation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beech, M.: 1986,Astron. Astrophys. 156, 391.Google Scholar
  2. Beech, M.: 1988,Astrophys. Space Sci. (submitted).Google Scholar
  3. Chandrasekhar, S.: 1939,An Introduction to the Study of Stellar Structure, The University of Chicago Press, Chicago.Google Scholar
  4. Cox, J. P. and Giuli, R. T.: 1968,Principles of Stellar Structure. Gordon and Breach, New York, 2, p. 994.Google Scholar
  5. Eggleton, P. P. and Faulkner, J.: 1981, in I. Iben and A. Renzini (eds.),Physical Processes in Red Giants, D. Reidel Publ. Co., Dordrecht, Holland, p. 179.Google Scholar
  6. Gamow, G.: 1938,Astrophys. J. 87, 206.Google Scholar
  7. Henrich, L. R. and Chandrasekhar, S.: 1941,Astrophys. J. 94, 525.Google Scholar
  8. Hjellming, M. S. and Webbink, R. F.: 1987,Astrophys. J. 318, 795.Google Scholar
  9. Horedt, G. P.: 1986,Astrophys. Space Sci. 126, 357.Google Scholar
  10. Maeder, A.: 1971,Astron. Astrophys. 14, 351.Google Scholar
  11. McCrea, W.: 1957,Monthly Notices Roy. Astron. Soc. 117, 562.Google Scholar
  12. Schoenberg, M. and Chandrasekhar, S.: 1942,Astrophys. J. 96, 161.Google Scholar
  13. Stein, R. F.: 1966, in R. F. Stein and A. G. W. Cameron (eds.),Stellar Evolution, Plenum Press, New York, p. 3.Google Scholar
  14. Yahil, A. and Van den Horn, L.: 1985,Astrophys. J. 296, 554.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Martin Beech
    • 1
  1. 1.Astronomy DepartmentUniversity of Western OntarioLondonCanada

Personalised recommendations