Astrophysics and Space Science

, Volume 147, Issue 2, pp 219–227 | Cite as

The Schoenberg-Chandrasekhar limit: A polytropic approximation

  • Martin Beech


The existence of a maximum isothermal core mass fraction (qmax), the Schoenberg-Chandrasekhar limit, is one of the ‘classic’ results from the theory of stellar structure. This limit can be demonstrated through a simplified composite polytrope model in which an isothermal core is surrounded by ann=1 polytrope envelope. While this model underestimatesqmas by ∼25% in the homogeneous case, it is accurate to within 5% in the more realistic inhomogeneous situation.


Mass Fraction Homogeneous Case Core Mass Stellar Structure Polytrope Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beech, M.: 1986,Astron. Astrophys. 156, 391.Google Scholar
  2. Beech, M.: 1988,Astrophys. Space Sci. (submitted).Google Scholar
  3. Chandrasekhar, S.: 1939,An Introduction to the Study of Stellar Structure, The University of Chicago Press, Chicago.Google Scholar
  4. Cox, J. P. and Giuli, R. T.: 1968,Principles of Stellar Structure. Gordon and Breach, New York, 2, p. 994.Google Scholar
  5. Eggleton, P. P. and Faulkner, J.: 1981, in I. Iben and A. Renzini (eds.),Physical Processes in Red Giants, D. Reidel Publ. Co., Dordrecht, Holland, p. 179.Google Scholar
  6. Gamow, G.: 1938,Astrophys. J. 87, 206.Google Scholar
  7. Henrich, L. R. and Chandrasekhar, S.: 1941,Astrophys. J. 94, 525.Google Scholar
  8. Hjellming, M. S. and Webbink, R. F.: 1987,Astrophys. J. 318, 795.Google Scholar
  9. Horedt, G. P.: 1986,Astrophys. Space Sci. 126, 357.Google Scholar
  10. Maeder, A.: 1971,Astron. Astrophys. 14, 351.Google Scholar
  11. McCrea, W.: 1957,Monthly Notices Roy. Astron. Soc. 117, 562.Google Scholar
  12. Schoenberg, M. and Chandrasekhar, S.: 1942,Astrophys. J. 96, 161.Google Scholar
  13. Stein, R. F.: 1966, in R. F. Stein and A. G. W. Cameron (eds.),Stellar Evolution, Plenum Press, New York, p. 3.Google Scholar
  14. Yahil, A. and Van den Horn, L.: 1985,Astrophys. J. 296, 554.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Martin Beech
    • 1
  1. 1.Astronomy DepartmentUniversity of Western OntarioLondonCanada

Personalised recommendations