Advertisement

Astrophysics and Space Science

, Volume 196, Issue 1, pp 117–123 | Cite as

Supernovae as sources of interstellar diamonds

  • Joseph A. NuthIII
  • John E. AllenJr.
Article

Abstract

Small hydrocarbon grains in the vicinity of a supernova could be annealed by the absorption of several far-ultraviolet photons to produce the tiny diamonds found in meteorites. These freshly-synthesized diamond grains would be bombarded by the heavy ions and neutrals in the supernovae outflow and would thereby acquire the distinctive noble-gas isotopic signature by which they were first isolated. Only diamonds formed relatively close to supernovae would acquire such a signature, since grains formed farther out would be subjected to a much diluted and less energetic plasma environment.

Keywords

Hydrocarbon Isotopic Signature Plasma Environment Small Hydrocarbon Energetic Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Anders, E., Virag, A., and Zinner, E.: 1990,Nature 345, 238.Google Scholar
  2. Anders, E.: 1987,Phil. Trans. R. Soc. London A323, 287.Google Scholar
  3. Badziag, P., Verwoerd, W. S., Ellis, W. P., and Greiner, N. R.: 1990,Nature 343, 244.Google Scholar
  4. Bernatowicz, T. J., Gibbons, P. C., and Lewis, R. S.: 1990,Astrophys. J. 359, 246.Google Scholar
  5. Bode, M. F. and Evans, A.: 1980,Monthly Notices Roy. Astron. Soc. 193, 21P.Google Scholar
  6. Chadi, D. J.: 1984,J. Vac. Sci. Technol. A 2, 948.Google Scholar
  7. Clayton, D. D.: 1989,Astrophys. J. 297, 719.Google Scholar
  8. Dwek, E.: 1988,Astrophys. J. 329, 814.Google Scholar
  9. Dwek, E. and Felten, J. E.: 1989,Astrophys. J. 342, 300.Google Scholar
  10. Dwek, E., Dimerstein, H. L., Gillett, F. C., Hauser, M. G., and Rice, W. L.: 1987,Astrophys. J. 315, 571.Google Scholar
  11. Frenklach, M.: 1989,J. Appl. Phys. 65, 5142.Google Scholar
  12. Hecht, J. H.: 1990,Astrophys. J. 305, 817.Google Scholar
  13. Huss, G. R.: 1990,Nature 347, 159.Google Scholar
  14. Jorgensen, U. G.: 1988,Nature 332, 702.Google Scholar
  15. Lewis, R. S., Ming, T., Wacker, J. F., Anders, E., and Steel, E.: 1987,Nature 326, 160.Google Scholar
  16. Lewis, R. S., Anders, E., and Draine, B. T.: 1989,Nature 339, 117.Google Scholar
  17. Martin, P. G. and Rogers, C.: 1987,Astrophys. J. 322, 374.Google Scholar
  18. Mathis, J. S.: 1990,Ann. Rev. Astron. Astrophys. 28, 37.Google Scholar
  19. Nuth, J. A.: 1987,Nature 329, 589.Google Scholar
  20. Nuth, J. A.: 1987b,Astrophys. Space Sci. 139, 103.Google Scholar
  21. Pandey, K. C.: 1982,Phys. Rev. B25, 4338.Google Scholar
  22. Pepper, S. V.: 1982,J. Vac. Sci. Technol. 20, 213.Google Scholar
  23. Robie, R. A. and Waldbaum, D. A.: 1968,Thermodynamic Properties of Minerals and Related Structures at 298.15 K (25°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures, U.S. Geol. Sur. Bull. 1259, GPO, Washington DC.Google Scholar
  24. Sorrell, W. H.: 1990,Monthly Notices Roy. Astron. Soc. 243, 570.Google Scholar
  25. Tielens, A. G. G. M., Seab, C. G., Hollenbach, D. J., and McKee, C.: 1987,Astrophys. J. 319, 109.Google Scholar
  26. Wdowiak, J. T.: 1987,Nature, 328, 385.Google Scholar
  27. Woosley, S. E., Pinto, P. A., and Ensman, L.: 1988,Astrophys. J. 324, 466.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Joseph A. NuthIII
    • 1
  • John E. AllenJr.
    • 1
  1. 1.Astrochemistry BranchNASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations