Astrophysics and Space Science

, Volume 242, Issue 1–2, pp 93–163 | Cite as

Advances in numerical modeling of astrophysical and space plasmas

  • Anthony L. Peratt


Plasma science is rich in distinguishable scales ranging from the atomic to the galactic to the meta-galactic, i.e., themesoscale. Thus plasma science has an important contribution to make in understanding the connection between microscopic and macroscopic phenomena. Plasma is a system composed of a large number of particles which interact primarily, but not exclusively, through the electromagnetic field. The problem of understanding the linkages and couplings in multi-scale processes is a frontier problem of modern science involving fields as diverse as plasma phenomena in the laboratory to galactic dynamics.

Unlike the first three states of matter, plasma, often called the fourth state of matter, involves the mesoscale and its interdisciplinary founding have drawn upon various subfields of physics including engineering, astronomy, and chemistry. Basic plasma research is now posed to provide, with major developments in instrumentation and large-scale computational resources, fundamental insights into the properties of matter on scales ranging from the atomic to the galactic. In all cases, these are treated as mesoscale systems. Thus, basic plasma research, when applied to the study of astrophysical and space plasmas, recognizes that the behavior of the near-earth plasma environment may depend to some extent on the behavior of the stellar plasma, that may in turn be governed by galactic plasmas. However, unlike laboratory plasmas, astrophysical plasmas will forever be inaccessible to in situ observation. The inability to test concepts and theories of large-scale plasmas leaves only virtual testing as a means to understand the universe. Advances in in computer technology and the capability of performing physics first principles, fully three-dimensional, particle-in-cell simulations, are making virtual testing a viable alternative to verify our predictions about the far universe.

The first part of this paper explores the dynamical and fluid properties of the plasma state, plasma kinetics, and the radiation emitted from plasmas. The second part of this paper outlines the formulation for the particle-in-cell simulation of astrophysical plasmas and advances in simulational techniques and algorithms, as-well-as the advances that may be expected as the computational resource grows to petaflop speed/memory capabilities.

Key words

Numerical Simulation Astrophysical Plasma Space Plasmas Plasma Universe Electric Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfvén, H., Carlqvist, P.: 1978,Astrophys. Space Sci. Vol. no. 55, 484Google Scholar
  2. Alfvén, H., Herlofson, N.: 1950,Phys. Rev. Vol. no. 78, 616Google Scholar
  3. Alfvén, H. and Fälthammar, C.-G.: 1963,Cosmical Electrodynamics, Oxford University Press, New YorkGoogle Scholar
  4. Akasofu, A.-I.: 1981, “Energy coupling between the solar wind and the magnetosphere”,Space Sci. Rev. Vol. no. 28, p. 21Google Scholar
  5. Bennett, W. H.: 1934, “Magnetically self-focusing streams”,Phys. Rev. Vol. no. 45, 890Google Scholar
  6. Birdsall, C. K., Langdon, A. B.: 1985,Plasma Physics via Computer Simulation, McGraw-Hill, New YorkGoogle Scholar
  7. Biskamp, D.: 1997, “Magnetic Reconnection in Plasmas”,Astrophys. Space Sci., This issue Google Scholar
  8. Bogdankevich, L. S., Rukhadze, A. A.: 1971, “Sov. Phys. Usp”,Sov. Phys. Usp. Vol. no. 14, 163Google Scholar
  9. Bostick, W. H.: 1986, “What laboratory produced plasma structures can contribute to the understanding of cosmic structures both large and small”,IEEE Trans. Plasma Sci. Vol. no. 14, 703Google Scholar
  10. Brackbill, J.: 1987, “Fundamentals of Numerical Magnetohydrodynamics, International School for Space Simulation, La londe les Maures, France, 1987”,Los Alamos National Laboratory Report, LA-UR-87-2052.Google Scholar
  11. Buneman, O.: 1976, “The advance from 2D electrostatic to 3D electromagnetic particle simulations”,Computer Phys. Comm. Vol. no. 12, pp. 21–31Google Scholar
  12. Buneman, O., Barnes, C. W., Green, J. C., Nielsen, D. E.: 1980, “Principles and capabilities of 3D, EM particle simulations”,J. Comp. Phys. Vol. no. 38, 1Google Scholar
  13. Buneman, O.: 1986, “Multidimensional particle codes: their capabilities and limitations for modeling space and laboratory plasma”,IEEE Trans. Plasma Sci. Vol. 14, 661Google Scholar
  14. Carlqvist, P.: 1988, “Cosmic electric currents and the generalized Bennett Relation”,Astrophys. Space Sci. Vol. no. 144, 73Google Scholar
  15. Chen, F. F.: 1984,Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New YorkGoogle Scholar
  16. Dawson, J. M., Decyk, V., Sydora, R., Liewer, P.: 1993, “High-performance computing and plasma physics”,Phys. Today., MarchGoogle Scholar
  17. Eastman, T.: 1990, “Transition regions in solar system and astrophysical plasmas”,IEEE Trans. Plasma Sci. Vol. no. 18, p 18.Google Scholar
  18. Frank, I., Ginsburg, V.: 1945, “Radiation of a uniformly moving electron due it its transition from one medium into another”,Journal of Phys. Vol. no. IX, pp. 353–362Google Scholar
  19. Gouveia Dal Pino, E. M., Opher, R.: 1989, “The origin of filaments in extended radio sources”,Astrophys. J. Vol. no. 342, pp. 686–699Google Scholar
  20. Lindberg, L.: 1970,Astrophys. Space Sci. Vol. no. 55, 203Google Scholar
  21. Hammer, D. A., Rostocker, N.: 1970,Phys. Fluids Vol. no. 13, 1831Google Scholar
  22. Happek, U., Sievers, A. J., Blum, E. B.: 1992, “Observation of coherent transition radiation”,Phys. Rev. Lett Google Scholar
  23. Hockney, R. W., Eastwood, J. W.: 1981,Computer Simulation Using Particles, McGraw-Hill, New YorkGoogle Scholar
  24. Jones, M. E., Peter, W. K.: 1985,IEEE Trans. Nucl. Sci. Vol. no. NS-32, p. 1794.Google Scholar
  25. Jones M. E., D. S. Lemons, R. J. Mason, V. A. Thomas, & D. Winske: 1996, “A Grid-Based Coulomb Collision Model for PIC Codes”,J. Comput. Phys. Vol. no. 123, in press.Google Scholar
  26. Jones, M. E., D. Winske, S. R. Goldman, R. A. Kopp, V. G. Rogatchev, S. A. Bel'kov, P. D. Gasparyan, G. V. Dolgoleva, N. V. Zhidkov, N. V. Ivanov, Yu. K Kochubej, G. F. Nasyrov, V. A. Pavlovskii, V. V. Smirnov, and Yu. A. Romanov: 1996, “An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities”,Phys. Plasmas Vol. no. 3, pp. 1096–1108.Google Scholar
  27. Jones, M. E.: 1995, “Multi-Level Concurrent Simulation: A White Paper”,unpublished Google Scholar
  28. Küppers, G., Salat, A., Wimmel, H. K.: 1973, “Macroscopic equilibria of relativistic electron beams in plasmas”,Plasma Phys. Vol. no. 15, 441Google Scholar
  29. Melrose, D. B.: 1997, “Particle Acceleration and Nonthermal Radiation in Space Plasmas”,Astrophys. Space Sci., This issue Google Scholar
  30. Miller, R. H., Combi, M. R.: 1995,Geophys. Res. Lett. Vol. no. 21, 1735Google Scholar
  31. Nahin, P. J.: 1988,Oliver Heaviside: Sage in Solitude, IEEE Press, New YorkGoogle Scholar
  32. Peratt, A. L.: 1992,Physics of the Plasma Universe, Springer-Verlag, New YorkGoogle Scholar
  33. Thomas, V.: 1995, “Multi-Level Concurrent Simulation”,Los Alamos National Laboratory Report LA-UR-95-3454 Google Scholar
  34. Trubnikov, B. A.: 1958, “Plasma radiation in a magnetic field”,Sov. Phys. ‘Doklady’ Vol. no. 3, 136Google Scholar
  35. Vu, H. X.: 1996, “An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities”,J. Comput. Phys. Vol. no. 123, in press.Google Scholar
  36. Witalis, E.: 1981,Phys. Rev. A Vol. no. 24, 2758Google Scholar
  37. Yonas, G., Poukey, J. W., Prestwich, K. R., Freeman, J. R., Toepfer, A. J., Clauser, J. J.: 1993,Nucl. Fusion Vol. no. 14, 731Google Scholar
  38. Zimmerman, G. B., Kruer, W. L.: 1975,Comments Plasma Phys. Vol. no. 2, p. 51.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Anthony L. Peratt
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations